Teske A, Wawer C, Muyzer G, Ramsing N B
Molecular Ecology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Appl Environ Microbiol. 1996 Apr;62(4):1405-15. doi: 10.1128/aem.62.4.1405-1415.1996.
The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio- and Desulfobulbus-related strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N.B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ.
通过分子方法和基于培养的方法,对丹麦玛丽埃格峡湾分层海水中的硫酸盐还原细菌群体进行了平行研究。对从水柱中分离的PCR扩增16S rRNA和编码rRNA的DNA(rDNA)进行变性梯度凝胶电泳(DGGE),结果表明不同水柱层中存在特定细菌群体,并揭示了rRNA和rDNA衍生的PCR扩增产物的高度分化模式,这可能反映了活跃和休眠的细菌群体。用rRNA探针与DGGE图谱杂交表明,在化学跃层内及以下,硫酸盐还原细菌的存在和活性增加(至少增加1个数量级)。与这种分子方法并行,采用了最可能数(MPN)计数法,结果发现玛丽埃格峡湾水柱中可培养的硫酸盐还原细菌分布相似,在化学跃层上方和下方每毫升分别发现约25个细胞和250个细胞。与脱硫弧菌和脱硫球茎菌相关的菌株出现在有氧区。对MPN培养物的DGGE条带进行测序,并与从水柱样品中提取的核酸获得的条带进行比较。MPN分离株在系统发育上属于硫酸盐还原δ变形菌纲(脱硫弧菌属、脱硫球茎菌属和脱硫杆菌属的成员),而分子分离株构成了δ变形菌纲的一个独立谱系。用通用真细菌PCR引物对PCR扩增核酸进行DGGE,从概念上揭示了一般细菌群体,而使用培养基则可以选择可培养的硫酸盐还原细菌。另一处已发表了一项对玛丽埃格峡湾生物地球化学、细菌活性和细菌计数的平行研究,作为本研究的补充(N.B.拉姆辛、H.福辛、T.G.费尔德曼、F.安德森和B.桑德鲁普,《应用与环境》)