Siebert H C, von der Lieth C W, Dong X, Reuter G, Schauer R, Gabius H J, Vliegenthart J F
Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany.
Glycobiology. 1996 Sep;6(6):561-72. doi: 10.1093/glycob/6.6.561-b.
The influence of 9-O-acetylation of GD1a, yielding GD1a (eNeu5,9Ac2) with a 9-O-acetylated sialic acid moiety linked to the outer galactose residue, on the spatial extension and mobility of the carbohydrate chain and on recognition by a natural human antibody is analysed. To study a potential impact of the O-acetyl group on the overall conformation of the carbohydrate chain, molecular dynamics (MD) simulations of oligosaccharide chain fragments of increasing length starting from the non-reducing end have been carried out for the first time in this study. They revealed a considerable loss in chain flexibility after addition of the internal N-acetylneuraminic acid onto the chain. Besides MD calculations with different dielectric constants, the conformational behaviour of the complete oligosaccharide chain of the 9-O-acetylated GD1a ganglioside was simulated in the solvents water and dimethyl sulfoxide. These solvents were also used in NMR measurements. The results of this study indicate that 9-O-acetylation at the terminal sialic acid does not influence the overall conformation of the ganglioside. An extended interaction analysis of energetically minimized conformations of GD1a (eNeu5,9Ac2) and GD1a, obtained during molecular dynamics simulations, allowed assessment of the influence of the different parts of the saccharide chains on spatial flexibility. Noteworthy energetic interactions, most interestingly between the 9-O-acetyl group and the pyranose ring of N-acetylgalactosamine, were ascertained by the calculations. However, the strength of this interaction does not force the ganglioside into a conformation, where the 9-O-acetyl group is no longer accessible. Binding of GD1a (eNeu5,9Ac2) to proteins, which are specific for 9-O-acetylated sialic acids, should thus at least partially be mediated by the presence of this group. To experimentally prove this assumption, a NMR study of 9-O-acetylated GD1a in the presence of an affinity-purified polyclonal IgG fraction from human serum with preferential binding to 9-O-acetylated sialic acid was performed. The almost complete disappearance of the intensity of the 9-O-acetyl methyl signal of the GD1a (eNeu5,9Ac2) clearly indicates that the assumed interaction of the 9-O-acetyl group with the human protein takes place.
分析了GD1a的9-O-乙酰化(生成带有与外半乳糖残基相连的9-O-乙酰化唾液酸部分的GD1a(eNeu5,9Ac2))对碳水化合物链的空间伸展和流动性以及对天然人类抗体识别的影响。为了研究O-乙酰基对碳水化合物链整体构象的潜在影响,本研究首次对从非还原端开始长度不断增加的寡糖链片段进行了分子动力学(MD)模拟。模拟结果显示,在链上添加内部N-乙酰神经氨酸后,链的柔韧性显著降低。除了使用不同介电常数进行MD计算外,还在水和二甲基亚砜溶剂中模拟了9-O-乙酰化GD1a神经节苷脂完整寡糖链的构象行为。这些溶剂也用于核磁共振测量。本研究结果表明,末端唾液酸的9-O-乙酰化不会影响神经节苷脂的整体构象。对分子动力学模拟过程中获得的GD1a(eNeu5,9Ac2)和GD1a能量最小化构象进行的扩展相互作用分析,使得能够评估糖链不同部分对空间柔韧性的影响。计算确定了值得注意的能量相互作用,最有趣的是9-O-乙酰基与N-乙酰半乳糖胺吡喃糖环之间的相互作用。然而,这种相互作用的强度并没有迫使神经节苷脂形成一种9-O-乙酰基不再可及的构象。因此,GD1a(eNeu5,9Ac2)与对9-O-乙酰化唾液酸具有特异性的蛋白质的结合,至少部分应由该基团的存在介导。为了通过实验证明这一假设,对9-O-乙酰化GD1a在存在从人血清中亲和纯化的优先结合9-O-乙酰化唾液酸的多克隆IgG组分的情况下进行了核磁共振研究。GD1a(eNeu5,9Ac2)的9-O-乙酰甲基信号强度几乎完全消失,清楚地表明9-O-乙酰基与人类蛋白质之间发生了假定的相互作用。