Suppr超能文献

使用原子力显微镜感知和模拟大变形压痕中附着细胞的力学响应。

Sensing and Modelling Mechanical Response in Large Deformation Indentation of Adherent Cell Using Atomic Force Microscopy.

机构信息

Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.

出版信息

Sensors (Basel). 2020 Mar 22;20(6):1764. doi: 10.3390/s20061764.

Abstract

The mechanical behaviour of adherent cells when subjected to the local indentation can be modelled via various approaches. Specifically, the tensegrity structure has been widely used in describing the organization of discrete intracellular cytoskeletal components, including microtubules (MTs) and microfilaments. The establishment of a tensegrity model for adherent cells has generally been done empirically, without a mathematically demonstrated methodology. In this study, a rotationally symmetric prism-shaped tensegrity structure is introduced, and it forms the basis of the proposed multi-level tensegrity model. The modelling approach utilizes the force density method to mathematically assure self-equilibrium. The proposed multi-level tensegrity model was developed by densely distributing the fundamental tensegrity structure in the intracellular space. In order to characterize the mechanical behaviour of the adherent cell during the atomic force microscopy (AFM) indentation with large deformation, an integrated model coupling the multi-level tensegrity model with a hyperelastic model was also established and applied. The coefficient of determination between the computational force-distance (F-D) curve and the experimental F-D curve was found to be at 0.977 in the integrated model on average. In the simulation range, along with the increase in the overall deformation, the local stiffness contributed by the cytoskeletal components decreased from 75% to 45%, while the contribution from the hyperelastic components increased correspondingly.

摘要

当细胞受到局部压痕时,其附着细胞的力学行为可以通过各种方法进行建模。具体来说,张拉整体结构已广泛用于描述离散的细胞内细胞骨架成分的组织,包括微管 (MTs) 和微丝。附着细胞的张拉整体模型的建立通常是通过经验来完成的,而没有数学上证明的方法。在这项研究中,引入了一种旋转对称的棱柱形张拉整体结构,它构成了所提出的多级张拉整体模型的基础。该建模方法利用力密度法从数学上确保自平衡。所提出的多级张拉整体模型是通过在细胞内空间密集分布基本的张拉整体结构来开发的。为了描述在原子力显微镜 (AFM) 压痕过程中具有大变形的附着细胞的力学行为,还建立并应用了一种将多级张拉整体模型与超弹性模型相结合的集成模型。在集成模型中,计算力-距离 (F-D) 曲线和实验 F-D 曲线之间的决定系数平均达到 0.977。在模拟范围内,随着整体变形的增加,细胞骨架成分的局部刚度从 75%降低到 45%,而超弹性成分的贡献相应增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验