Cape E G, Jones M, Yamada I, VanAuker M D, Valdes-Cruz L M
Cardiac Dynamics Laboratory, Children's Hospital of Pittsburgh, University of Pittsburgh (Pa) 15213, USA.
Circulation. 1996 Dec 1;94(11):2975-81. doi: 10.1161/01.cir.94.11.2975.
Despite good correlation between Doppler and catheter pressure drops in numerous reports, it is well known that Doppler tends to apparently overestimate pressure drops obtained by cardiac catheterization. Neither (1) simplification of the Bernoulli equation nor (2) pressure recovery effects can explain this dilemma when taken alone. This study addressed the hypothesis that a Reynolds number-based approach, which characterizes (1) and (2), provides a first step toward better agreement of catheter and Doppler assessments of pressure drops.
Doppler and catheter pressure drops were studied in an in vitro model designed to isolate the proposed Reynolds number effect and in a sheep model with varying degrees of stenosis. Doppler pressure drops in vitro correlated with the directly measured pressure drop for individual valves (r = .935, .960, .985, .984, .989, and .975) but with markedly different slopes and intercepts. A Bland-Altman type plot showed no useful pattern of discrepancy. The Reynolds number was successful in collapsing the data into the profile proposed in the hypothesis. Parallel results were found in the animal model.
Apparent overestimation of net pressure drop by Doppler is due to pressure recovery effects, and these effects are countered by both viscous effects and inertial/turbulent effects. Only by reconciliation of discrepancies by use of a quantity such as Reynolds number that embodies the relative importance of competing factors can the noninvasive and invasive methods be connected. This study shows that a Reynolds number-based approach accomplishes this goal both in the idealized in vitro setting and in a biological system.