Kuchling Franz, Fields Chris, Levin Michael
Department of Biology, Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
23 Rue des Lavandières, 11160 Caunes Minervois, France.
Entropy (Basel). 2022 Apr 26;24(5):601. doi: 10.3390/e24050601.
Evolution is full of coevolving systems characterized by complex spatio-temporal interactions that lead to intertwined processes of adaptation. Yet, how adaptation across multiple levels of temporal scales and biological complexity is achieved remains unclear. Here, we formalize how evolutionary multi-scale processing underlying adaptation constitutes a form of metacognition flowing from definitions of metaprocessing in machine learning. We show (1) how the evolution of metacognitive systems can be expected when fitness landscapes vary on multiple time scales, and (2) how multiple time scales emerge during coevolutionary processes of sufficiently complex interactions. After defining a metaprocessor as a regulator with local memory, we prove that metacognition is more energetically efficient than purely object-level cognition when selection operates at multiple timescales in evolution. Furthermore, we show that existing modeling approaches to coadaptation and coevolution-here active inference networks, predator-prey interactions, coupled genetic algorithms, and generative adversarial networks-lead to multiple emergent timescales underlying forms of metacognition. Lastly, we show how coarse-grained structures emerge naturally in any resource-limited system, providing sufficient evidence for metacognitive systems to be a prevalent and vital component of (co-)evolution. Therefore, multi-scale processing is a necessary requirement for many evolutionary scenarios, leading to de facto metacognitive evolutionary outcomes.
进化充满了共同进化的系统,其特征是复杂的时空相互作用,从而导致相互交织的适应过程。然而,如何在多个时间尺度和生物复杂性层面上实现适应仍不清楚。在这里,我们将机器学习中元处理的定义所产生的进化多尺度处理形式化为一种元认知形式,以此来解释适应背后的进化多尺度处理。我们展示了:(1)当适应度景观在多个时间尺度上变化时,元认知系统的进化是如何被预期的;(2)在足够复杂的相互作用的共同进化过程中,多个时间尺度是如何出现的。在将元处理器定义为具有局部记忆的调节器之后,我们证明,当选择在进化中的多个时间尺度上起作用时,元认知在能量利用上比纯粹的对象层面认知更有效率。此外,我们表明,现有的关于共同适应和共同进化的建模方法——这里指主动推理网络、捕食者 - 猎物相互作用、耦合遗传算法和生成对抗网络——会导致元认知形式背后出现多个涌现时间尺度。最后,我们展示了粗粒度结构是如何在任何资源受限的系统中自然出现的,为元认知系统成为(共同)进化中普遍且重要的组成部分提供了充分证据。因此,多尺度处理是许多进化场景的必要条件,从而导致事实上的元认知进化结果。