Suppr超能文献

视紫红质中跨膜螺旋3和6的功能相互作用。将苯丙氨酸261替换为丙氨酸会导致甘氨酸121替换突变体表型的逆转。

Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant.

作者信息

Han M, Lin S W, Minkova M, Smith S O, Sakmar T P

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.

出版信息

J Biol Chem. 1996 Dec 13;271(50):32337-42. doi: 10.1074/jbc.271.50.32337.

Abstract

Replacement of a highly conserved glycine residue on transmembrane (TM) helix 3 of bovine rhodopsin (Gly121) by amino acid residues with larger side chains causes a progressive blue-shift in the lambdamax value of the pigment, a decrease in thermal stability, and an increase in reactivity with hydroxylamine. In addition, mutation of Gly121 causes a relative reversal in the selectivity of opsin for 11-cis-retinal over all-trans-retinal. It was suggested that Gly121 plays an important role in defining the 11-cis-retinal binding pocket of rhodopsin (Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330-32336). Here, we combined the mutant opsin G121L with second site replacements of four different amino acid residues on TM helix 6: Met257, Val258, Phe261, or Trp265. We show that the loss of function phenotypes of the G121L mutant described above can be partially reverted specifically by the mutation of Phe261, a residue highly conserved in all G protein-coupled receptors. For example, the double-replacement mutant G121L/F261A has spectral, chromophore-binding, and transducin-activating properties intermediate between those of G121L and rhodopsin. This rescue of the G121L defects did not occur with the other second site mutations tested. We conclude that specific portions of TM helices 3 and 6, which include Gly121 and Phe261, respectively, define the chromophore-binding pocket in rhodopsin. Finally, the results are placed in the context of a molecular graphics model of the TM domain of rhodopsin, which includes the retinal-binding pocket.

摘要

将牛视紫红质跨膜(TM)螺旋3上一个高度保守的甘氨酸残基(Gly121)替换为侧链更大的氨基酸残基,会导致该色素的最大吸收波长(λmax)值逐渐发生蓝移、热稳定性降低以及与羟胺的反应性增加。此外,Gly121的突变导致视蛋白对11-顺式视黄醛相对于全反式视黄醛的选择性发生相对逆转。有人提出,Gly121在确定视紫红质的11-顺式视黄醛结合口袋中起重要作用(Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330 - 32336)。在此,我们将突变型视蛋白G121L与TM螺旋6上四个不同氨基酸残基的第二位点替换相结合:Met257、Val258、Phe261或Trp265。我们发现,上述G121L突变体的功能丧失表型可通过Phe261的突变特异性地部分恢复,Phe261是所有G蛋白偶联受体中高度保守的一个残基。例如,双替换突变体G121L/F261A具有介于G121L和视紫红质之间的光谱、发色团结合和转导素激活特性。测试的其他第二位点突变未出现这种对G121L缺陷的挽救情况。我们得出结论,TM螺旋3和6的特定部分(分别包括Gly121和Phe261)确定了视紫红质中的发色团结合口袋。最后,将结果置于视紫红质TM结构域的分子图形模型(包括视黄醛结合口袋)的背景下进行讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验