Suppr超能文献

基于胸部X光片报告的自然语言处理识别疑似肺结核患者

Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports.

作者信息

Jain N L, Knirsch C A, Friedman C, Hripcsak G

机构信息

Department of Medical Informatics, Columbia-Presbyterian Medical Center, New York, NY, USA.

出版信息

Proc AMIA Annu Fall Symp. 1996:542-6.

Abstract

Identification of eligible patients from electronically available patient data is a key difficulty in computerizing clinical practice guidelines because a large amount of the relevant data is stored as free text. We have been using MedLEE (Medical Language Extraction and Encoding System), a natural language processing system, to encode the clinical information in all chest radiograph and mammogram reports. This paper describes a retrospective study to determine if MedLEE can identify patients at risk for having tuberculosis (TB) based on their admission chest radiographs. Reports of 171 adult inpatients with culture-positive TB during 1992 and 1993 were manually coded (by a TB specialist) using seven terms suggestive of TB, and were also encoded by MedLEE. Using manual coding as the gold standard, MedLEE agreed on the classification of 152/171 (88.9%) reports--129/142 (90.8%) suspicious for TB and 23/29 (79.3%) not suspicious for TB; and 1072/1197 (89.6%) terms indicative of TB. Analysis showed that most of the discrepancies were caused by MedLEE not finding the location of the infiltrate. By ignoring the location of the infiltrate, the agreement became 157/171 (91.8%) reports and 946/1026 (92.2%) terms. Thus, natural language processing offers a practical alternative for using free-text reports to determine patient eligibility for computerized clinical practice guidelines.

摘要

从电子可用患者数据中识别符合条件的患者是临床实践指南计算机化的一个关键难题,因为大量相关数据以自由文本形式存储。我们一直在使用MedLEE(医学语言提取与编码系统),一种自然语言处理系统,对所有胸部X光片和乳房X光片报告中的临床信息进行编码。本文描述了一项回顾性研究,以确定MedLEE能否根据入院胸部X光片识别有患结核病(TB)风险的患者。1992年至1993年期间171例痰培养阳性的成年住院患者的报告由一名结核病专家使用七个提示结核病的术语进行人工编码,同时也由MedLEE进行编码。以人工编码作为金标准,MedLEE对152/171(88.9%)的报告分类达成一致——129/142(90.8%)对结核病可疑,23/29(79.3%)对结核病不可疑;以及1072/1197(89.6%)的提示结核病的术语。分析表明,大多数差异是由MedLEE未找到浸润部位所致。通过忽略浸润部位,一致性变为157/171(91.8%)的报告和946/1026(92.2%)的术语。因此,自然语言处理为利用自由文本报告确定患者是否符合计算机化临床实践指南提供了一种实用的替代方法。

相似文献

引用本文的文献

7
Natural Language Processing for EHR-Based Computational Phenotyping.基于电子健康记录的自然语言处理计算表型。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.

本文引用的文献

1
Design of a clinical event monitor.临床事件监测仪的设计
Comput Biomed Res. 1996 Jun;29(3):194-221. doi: 10.1006/cbmr.1996.0016.
4
Tuberculosis in the 1990s.20世纪90年代的结核病。
Ann Intern Med. 1993 Sep 1;119(5):400-10. doi: 10.7326/0003-4819-119-5-199309010-00009.
10
Tuberculosis in New York City--turning the tide.纽约市的结核病——扭转局势
N Engl J Med. 1995 Jul 27;333(4):229-33. doi: 10.1056/NEJM199507273330406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验