Suppr超能文献

[增强的自主呼吸]

[Augmented spontaneous breathing].

作者信息

Hachenberg T

机构信息

Klinik und Poliklinik für Anästhesiologie und Intensivmedizin, Ernst-Moritz-Arndt-Universität Greifswald.

出版信息

Anaesthesist. 1996 Sep;45(9):839-55. doi: 10.1007/s001010050319.

Abstract

Impaired pulmonary gas exchange can result from lung parenchymal failure inducing oxygenation deficiency and fatigue of the respiratory muscles, which is characterized by hypercapnia or a combination of both mechanisms. Contractility of and coordination between the diaphragm and the thoracoabdominal respiratory muscles predominantly determine the efficiency of spontaneous breathing. Sepsis, cardiac failure, malnutrition or acute changes of the load conditions may induce fatigue of the respiratory muscles. Augmentation of spontaneous breathing is not only achieved by the application of different technical principles or devices; it also has to improve perfusion, metabolism, load conditions and contractility of the respiratory muscles. Intermittent mandatory ventilation (IMV) allows spontaneous breathing of the patient and augments alveolar ventilation by periodically applying positive airway pressure tidal volumes, which are generated by the respirator. Potential advantages include lower mean airway pressure (PAW), as compared with controlled mechanical ventilation, and improved haemodynamics. Suboptimal IMV systems may impose increased work and oxygen cost of breathing, fatigue of the respiratory muscles and CO2 retention. During pressure support ventilation (PSV), inspiratory alterations of PAW or gas flow (trigger) are detected by the respirator, which delivers a gas flow to maintain PAW at a fixed value (usually 5-20 cm H2O) during inspiration. PSV may be combined with other modalities of respiratory therapy such as IMV or CPAP. Claimed advantages of PSV include decreased effort of breathing, reduced systemic and respiratory muscle consumption of oxygen, prophylaxis of diaphragmatic fatigue and an improved extubation rate after prolonged periods of mechanical ventilation. Minimum alveolar ventilation is not guaranteed during PSV; thus, close observation of the patient is mandatory to avoid serious respiratory complications. Continuous positive airway pressure breathing (CPAP) maintains PAW above atmospheric pressure throughout the respiratory cycle, which may increase functional residual capacity and decrease the effort of breathing. CPAP has been conceptually designed for the augmentation of spontaneous breathing and requires the intact central and peripheral regulation of the respiratory system. Airway pressure release ventilation (APRV) improves alveolar ventilation by intermittent release of PAW, which is kept above atmospheric pressure by means of a high-flow CPAP system. The opening of an expiratory valve for 1-2 s induces a decreased PAW and lung volume, which increases rapidly to pre-exhalation values after closure of the valve due to the high gas flow within the circuit (90-100 1/min). APRV may improve haemodynamics and VA/Q distribution as compared with conventional mechanical ventilation. Biphasic positive airway pressure (BIPAP) is characterized by the combination of spontaneous breathing and time-regulated, pressure-controlled mechanical ventilation. During the respiratory cycle the ventilator generates two alternating CPAP levels, which can be modified with regard to time and pressure. As with APRV, alveolar ventilation is maintained even if the spontaneous breathing efforts of the patient cease, which improves the safety of both modes of respiratory therapy. The contribution of spontaneous breathing to total minute ventilation may be important, since a decreased shunt and improved VA/Q relationship have been observed in experimental non-cardiogenic lung oedema. These data give support to the concept that spontaneous breathing should be maintained and augmented in the setting of acute respiratory failure.

摘要

肺实质功能衰竭导致氧合不足和呼吸肌疲劳可引起肺气体交换受损,其特征为高碳酸血症或两种机制并存。膈肌与胸腹呼吸肌之间的收缩力及协调性主要决定自主呼吸的效率。脓毒症、心力衰竭、营养不良或负荷条件的急性改变可导致呼吸肌疲劳。增强自主呼吸不仅可通过应用不同的技术原理或设备来实现;还必须改善呼吸肌的灌注、代谢、负荷条件及收缩力。间歇强制通气(IMV)允许患者自主呼吸,并通过定期施加由呼吸机产生的气道正压潮气量来增加肺泡通气。与控制机械通气相比,其潜在优势包括更低的平均气道压(PAW)以及改善的血流动力学。不理想的IMV系统可能会增加呼吸功和呼吸氧耗、导致呼吸肌疲劳及二氧化碳潴留。在压力支持通气(PSV)期间,呼吸机检测PAW或气流(触发)的吸气变化,并在吸气期间输送气流以将PAW维持在固定值(通常为5 - 20 cm H₂O)。PSV可与其他呼吸治疗方式如IMV或持续气道正压通气(CPAP)联合使用。PSV的宣称优势包括呼吸用力减少、全身和呼吸肌氧消耗降低、预防膈肌疲劳以及延长机械通气时间后的拔管率提高。PSV期间不能保证最低肺泡通气;因此,必须密切观察患者以避免严重的呼吸并发症。持续气道正压通气(CPAP)在整个呼吸周期中将PAW维持在大气压以上,这可能会增加功能残气量并减少呼吸用力。CPAP在概念上是为增强自主呼吸而设计的,需要呼吸系统完整的中枢和外周调节。气道压力释放通气(APRV)通过间歇性释放PAW来改善肺泡通气,PAW通过高流量CPAP系统维持在大气压以上。呼气阀打开1 - 2秒会导致PAW和肺容积降低,由于回路内的高气流(90 - 100 l/min),呼气阀关闭后肺容积会迅速恢复到呼气前的值。与传统机械通气相比,APRV可能会改善血流动力学和通气/血流比值分布。双相气道正压通气(BIPAP)的特点是自主呼吸与时间调节、压力控制的机械通气相结合。在呼吸周期中,呼吸机产生两个交替的CPAP水平,可在时间和压力方面进行调整。与APRV一样,即使患者的自主呼吸努力停止,也能维持肺泡通气,这提高了两种呼吸治疗模式的安全性。自主呼吸对总分钟通气量的贡献可能很重要,因为在实验性非心源性肺水肿中观察到分流减少和通气/血流关系改善。这些数据支持了在急性呼吸衰竭情况下应维持和增强自主呼吸的概念。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验