Johann C, Garidel P, Mennicke L, Blume A
Fachbereich Chemie, Universität Kaiserslautern, Germany.
Biophys J. 1996 Dec;71(6):3215-28. doi: 10.1016/S0006-3495(96)79515-2.
A simulation program using least-squares minimization was developed to calculate and fit heat capacity (cp) curves to experimental thermograms of dilute aqueous dispersions of phospholipid mixtures determined by high-sensitivity differential scanning calorimetry. We analyzed cp curves and phase diagrams of the pseudobinary aqueous lipid systems 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol/ 1,2-dipalmitoyl-sn-glycero-3phosphatidylcholine (DMPG/DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid/1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DMPA/DPPC) at pH 7. The simulation of the cp curves is based on regular solution theory using two nonideality parameters rho g and rho l for symmetric nonideal mixing in the gel and the liquid-crystalline phases. The broadening of the cp curves owing to limited cooperativity is incorporated into the simulation by convolution of the cp curves calculated for infinite cooperativity with a broadening function derived from a simple two-state transition model with the cooperative unit size n = delta HVH/delta Hcal as an adjustable parameter. The nonideality parameters and the cooperative unit size turn out to be functions of composition. In a second step, phase diagrams were calculated and fitted to the experimental data by use of regular solution theory with four different model assumptions. The best fits were obtained with a four-parameter model based on nonsymmetric, nonideal mixing in both phases. The simulations of the phase diagrams show that the absolute values of the nonideality parameters can be changed in a certain range without large effects on the shape of the phase diagram as long as the difference of the nonideality parameters for rho g for the gel and rho l for the liquid-crystalline phase remains constant. The miscibility in DMPG/DPPC and DMPA/DPPC mixtures differs remarkably because, for DMPG/DPPC, delta rho = rho l -rho g is negative, whereas for DMPA/DPPC this difference is positive. For DMPA/DPPC, this difference is interpreted as being caused by a negative rho g value, indicating complex formation of unlike molecules in the gel phase.
开发了一种使用最小二乘法最小化的模拟程序,以计算热容量(cp)曲线并将其拟合到通过高灵敏度差示扫描量热法测定的磷脂混合物稀水分散体的实验热谱图。我们分析了pH值为7时假二元水脂质体系1,2-二肉豆蔻酰-sn-甘油-3-磷脂酰甘油/1,2-二棕榈酰-sn-甘油-3-磷脂酰胆碱(DMPG/DPPC)和1,2-二肉豆蔻酰-sn-甘油-3-磷脂酸/1,2-二棕榈酰-sn-甘油-3-磷脂酰胆碱(DMPA/DPPC)的cp曲线和相图。cp曲线的模拟基于正规溶液理论,使用两个非理想参数rho g和rho l来描述凝胶相和液晶相中的对称非理想混合。由于协同性有限导致的cp曲线展宽通过将无限协同性下计算的cp曲线与从简单双态转变模型导出的展宽函数进行卷积纳入模拟,其中协同单元大小n = delta HVH/delta Hcal作为可调参数。非理想参数和协同单元大小结果是组成的函数。第二步,通过使用具有四种不同模型假设的正规溶液理论计算相图并将其拟合到实验数据。基于两相中非对称、非理想混合的四参数模型获得了最佳拟合。相图的模拟表明,只要凝胶相的rho g和液晶相的rho l的非理想参数之差保持恒定,非理想参数的绝对值可以在一定范围内变化而对相图形状没有太大影响。DMPG/DPPC和DMPA/DPPC混合物中的混溶性有显著差异,因为对于DMPG/DPPC,delta rho = rho l - rho g为负,而对于DMPA/DPPC,这种差异为正。对于DMPA/DPPC,这种差异被解释为由负的rho g值引起,表明在凝胶相中不同分子形成复合物。