Suppr超能文献

学习同步链:化噪声为信号。

Learning synfire chains: turning noise into signal.

作者信息

Hertz J, Prügel-Bennett A

机构信息

Nordita, Copenhagen, Denmark.

出版信息

Int J Neural Syst. 1996 Sep;7(4):445-50. doi: 10.1142/s0129065796000427.

Abstract

We develop a model of cortical coding of stimuli by the sequences of activation patterns that they ignite in an initially random network. Hebbian learning then stabilizes these sequences, making them attractors of the dynamics. There is a competition between the capacity of the network and the stability of the sequences; for small stability parameter epsilon (the strength of the mean stabilizing PSP in the neurons in a learned sequence) the capacity is proportional to 1/epsilon 2. For epsilon of the order of or less than the PSPs of the untrained network, the capacity exceeds that for sequences learned from tabula rasa.

摘要

我们通过刺激在初始随机网络中引发的激活模式序列,构建了一种皮层刺激编码模型。赫布学习随后使这些序列稳定下来,使其成为动力学的吸引子。网络容量与序列稳定性之间存在竞争;对于较小的稳定性参数ε(学习序列中神经元平均稳定 PSP 的强度),容量与 1/ε² 成正比。当ε的量级小于或等于未训练网络的 PSP 时,该容量超过从白板状态学习的序列的容量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验