Suppr超能文献

tRNA(赖氨酸)氨基酸接受茎中的碱基替换会导致错误酰化和解码改变。

A base substitution in the amino acid acceptor stem of tRNA(Lys) causes both misacylation and altered decoding.

作者信息

Pagel F T, Murgola E J

机构信息

Department of Molecular Genetics, University of Texas M.D., Anderson Cancer Center, Houston 77030, USA.

出版信息

Gene Expr. 1996;6(2):101-12.

Abstract

In 1984, our laboratory reported the characterization of the first misacylated tRNA missense suppressor, a mutant Escherichia coli lysine tRNA with a C70 to U base change in the amino acid acceptor stem. We suggested then that the suppressor tRNA, though still acylated to a large extent with lysine, is partially misacylated with alanine. The results reported in this article demonstrate that is the case both in vitro and in vivo. For the in vitro studies, the mutant tRNA species was isolated from the appropriate RPC-5 column fractions and shown to be acylatable with both lysine and alanine. For the in vivo demonstration, use was made of a temperature-sensitive alaS mutation, which results in decreasing acylation with Ala as the temperature is increased, resulting ultimately in lethality at 42 degrees C. The alaSts mutation was also used to demonstrate that the ability of the same missense suppressor, lysT(U70), to suppress a trpA frameshift mutation is not affected by the Ala-acylation deficiency. We conclude that the misacylation and altered decoding are two independent effects of the C70 to U mutation in tRNA(Lys). The influence of an alteration in the acceptor stem, which is in contact with the large (50S) ribosomal subunit, on decoding, which involves contact between the anticodon region of tRNA and the small (30S) ribosomal subunit, may occur intramolecularly, through the tRNA molecule. Alternatively, the U70 effect may be accomplished intermolecularly; for example, it may alter the interaction of tRNA with ribosomal RNA in the 50S subunit, which may then influence further interactions between the two subunits and between the 30S subunit and the anticodon region of the tRNA. Preliminary evidence suggesting some form of the latter explanation is presented. The influence of a single nucleotide on both tRNA identity and decoding may be related to the coevolution of tRNAs, aminoacyl-tRNA synthetases, and ribosomes.

摘要

1984年,我们实验室报道了首个错酰化tRNA错义抑制子的特性,它是一种突变的大肠杆菌赖氨酸tRNA,在氨基酸接受茎中存在C70到U的碱基变化。当时我们认为,这种抑制子tRNA虽然在很大程度上仍被赖氨酸酰化,但也有部分被丙氨酸错酰化。本文报道的结果表明,在体外和体内都是如此。对于体外研究,从合适的RPC - 5柱级分中分离出突变tRNA种类,并证明它可被赖氨酸和丙氨酸酰化。对于体内证明,利用了温度敏感型alaS突变,随着温度升高,该突变导致丙氨酰化减少,最终在42℃时导致致死性。alaSts突变还用于证明,同一个错义抑制子lysT(U70)抑制trpA移码突变的能力不受丙氨酰化缺陷的影响。我们得出结论,错酰化和译码改变是tRNA(Lys)中C70到U突变的两个独立效应。与大(50S)核糖体亚基接触的接受茎的改变对译码的影响,译码涉及tRNA的反密码子区域与小(30S)核糖体亚基之间的接触,可能通过tRNA分子在分子内发生。或者,U70效应可能通过分子间实现;例如,它可能改变tRNA与50S亚基中核糖体RNA的相互作用,这可能进而影响两个亚基之间以及30S亚基与tRNA反密码子区域之间的进一步相互作用。文中给出了一些初步证据,表明存在某种形式的后一种解释。单个核苷酸对tRNA识别和译码的影响可能与tRNA、氨酰 - tRNA合成酶和核糖体的共同进化有关。

相似文献

2
Nucleotide substitution in the amino acid acceptor stem of lysine transfer RNA causes missense suppression.
J Mol Biol. 1984 Jan 15;172(2):177-84. doi: 10.1016/s0022-2836(84)80036-4.
3
Missense and nonsense suppressors can correct frameshift mutations.
Biochimie. 1989 Jun;71(6):729-39. doi: 10.1016/0300-9084(89)90089-8.
4
tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
J Mol Biol. 1998 May 15;278(4):801-13. doi: 10.1006/jmbi.1998.1711.
5
Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine.
Plant J. 2007 May;50(4):627-36. doi: 10.1111/j.1365-313X.2007.03076.x. Epub 2007 Apr 8.
6
Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base.
J Mol Biol. 2001 Jan 19;305(3):377-88. doi: 10.1006/jmbi.2000.4282.
7
Misacylation of pyrrolysine tRNA in vitro and in vivo.
FEBS Lett. 2008 Oct 15;582(23-24):3353-8. doi: 10.1016/j.febslet.2008.08.027. Epub 2008 Sep 5.
9
The role of modifications in codon discrimination by tRNA(Lys)UUU.
Nat Struct Mol Biol. 2004 Dec;11(12):1186-91. doi: 10.1038/nsmb861. Epub 2004 Nov 21.

引用本文的文献

1
Multiplex suppression of four quadruplet codons via tRNA directed evolution.
Nat Commun. 2021 Sep 29;12(1):5706. doi: 10.1038/s41467-021-25948-y.
2
Protein synthesis in Escherichia coli with mischarged tRNA.
J Bacteriol. 2003 Jun;185(12):3524-6. doi: 10.1128/JB.185.12.3524-3526.2003.

本文引用的文献

1
Suppressor gene alteration of protein primary structure.
Proc Natl Acad Sci U S A. 1963 Jul;50(1):9-16. doi: 10.1073/pnas.50.1.9.
2
The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptohan synthetase.
Cold Spring Harb Symp Quant Biol. 1961;26:11-24. doi: 10.1101/sqb.1961.026.01.006.
6
The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function.
Prog Nucleic Acid Res Mol Biol. 1996;53:79-129. doi: 10.1016/s0079-6603(08)60143-9.
7
The presence of codon-anticodon pairs in the acceptor stem of tRNAs.
Proc Natl Acad Sci U S A. 1996 May 14;93(10):4537-42. doi: 10.1073/pnas.93.10.4537.
8
Origin of genetic code: A needle in the haystack of tRNA sequences.
Proc Natl Acad Sci U S A. 1996 May 14;93(10):4521-2. doi: 10.1073/pnas.93.10.4521.
9
UGA suppression by a mutant RNA of the large ribosomal subunit.
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12309-13. doi: 10.1073/pnas.92.26.12309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验