Agris P F, Guenther R, Ingram P C, Basti M M, Stuart J W, Sochacka E, Malkiewicz A
Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
RNA. 1997 Apr;3(4):420-8.
Transfer RNA(Lys)SUU, with a 5-modified-2-thiouridine at wobble position 34, facilitates -1 frameshifts for correct translation of the Escherichia coli DNA polymerase gamma subunit and retroviral polymerases. Peptidyl-tRNA(Lys)SUU prematurely terminates translation more often than other tRNAs. In order to determine if the anticodon structures of bacterial and mammalian tRNA(Lys)SUU species explain these observations, oligonucleotides corresponding to the anticodon regions of mammalian and E. coli tRNA(Lys)SUU were synthesized and their physicochemical properties compared with that of E. coli tRNA(Glu)SUC. The anticodon region of tRNA(Lys)SUU was stabilized by an unusual interaction between the side chains of the 5-modified-s(2)U34 and N-6-threonylcarbamoyl-adenosine-37 (t(6)A37), a combination of modified nucleosides unique to tRNA(Lys)SUU species. This first observation of modified nucleoside side-chain interactions is analogous to the interactions of amino acid side chains in proteins. The tRNA(Lys)SUU anticodon structure was determined from NMR restraints on model oligonucleotides. With only two of three anticodon bases available for codon pairing, this unconventional anticodon structure is a reasonable explanation for the bacterial and mammalian tRNA(Lys)SUU tendency to frameshift. A two-out-of-three reading of coding triplets also explains the increased rate at which peptidyl-tRNA(Lys)SUU prematurely terminates translation. In addition, modified nucleoside interaction distorts the anticodon loop. The distorted loop is a possible structural determinant for the preferential selection of tRNA(Lys3)SUU as primer of HIV-1 reverse transcriptase in vivo.
携带位于摆动位置34处5 - 甲基化 - 2 - 硫代尿苷的赖氨酸转运RNA(tRNA(Lys)SUU),有助于发生 - 1移码,从而正确翻译大肠杆菌DNA聚合酶γ亚基和逆转录病毒聚合酶。与其他tRNA相比,肽基 - tRNA(Lys)SUU更常过早终止翻译。为了确定细菌和哺乳动物tRNA(Lys)SUU种类的反密码子结构是否能解释这些现象,合成了与哺乳动物和大肠杆菌tRNA(Lys)SUU反密码子区域相对应的寡核苷酸,并将它们的物理化学性质与大肠杆菌tRNA(Glu)SUC的进行比较。tRNA(Lys)SUU的反密码子区域通过5 - 甲基化 - s(2)U34和N - 6 - 苏氨甲酰氨基腺苷 - 37(t(6)A37)侧链之间的异常相互作用而稳定,这是tRNA(Lys)SUU种类特有的修饰核苷组合。对修饰核苷侧链相互作用的这一首次观察类似于蛋白质中氨基酸侧链的相互作用。tRNA(Lys)SUU反密码子结构是根据对模型寡核苷酸的核磁共振限制确定的。由于只有三个反密码子碱基中的两个可用于密码子配对,这种非常规的反密码子结构是对细菌和哺乳动物tRNA(Lys)SUU移码倾向的合理解释。对编码三联体的三分之二读取也解释了肽基 - tRNA(Lys)SUU过早终止翻译的速率增加。此外,修饰核苷相互作用使反密码子环扭曲。扭曲的环可能是体内优先选择tRNA(Lys3)SUU作为HIV - 1逆转录酶引物的结构决定因素。