Suppr超能文献

Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction.

作者信息

Benito E P, Prins T, van Kan J A

机构信息

Wageningen Agricultural University, Department of Phytopathology, Netherlands.

出版信息

Plant Mol Biol. 1996 Dec;32(5):947-57. doi: 10.1007/BF00020491.

Abstract

Establishment of a plant-pathogen interaction involves differential gene expression in both organisms. In order to isolate Botrytis cinerea genes whose expression is induced during its interaction with tomato, a comparative analysis of the expression pattern of the fungus in planta with its expression pattern during in vitro culture was performed by differential display of mRNA (DDRT-PCR). Discrimination of fungal genes induced in planta from plant defense genes induced in response to the pathogen was attempted by including in this comparative analysis the expression patterns of healthy tomato leaves and of tomato leaves infected with two different pathogens, either Rhytophthora infestans or tobacco necrosis virus (TNV). Using a limited set of primer combinations, three B. cinerea cDNA fragments, ddB-2, ddB-5 and ddB-47, were isolated representing fungal genes whose expression is enhanced in planta. Northern blot analysis showed that the transcripts detected with the cDNA clones ddB-2 and ddB-5 accumulated at detectable levels only at late time points during the interaction. The cDNA clone ddB-47 detected two different sizes of transcripts displaying distinct, transient expression patterns during the interaction. Sequence analysis and database searches revealed no significant homology to any known sequence. These results show that the differential display procedure possesses enough sensitivity to be applied to the detection of fungal genes induced during a plant-pathogen interaction. Additionally, four cDNA fragments were isolated representing tomato genes induced in response to the infection caused by B. cinerea, but not by P. infestans.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验