Suppr超能文献

皮质神经元细胞外尖峰波形的变异性

Variability of extracellular spike waveforms of cortical neurons.

作者信息

Fee M S, Mitra P P, Kleinfeld D

机构信息

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.

出版信息

J Neurophysiol. 1996 Dec;76(6):3823-33. doi: 10.1152/jn.1996.76.6.3823.

Abstract
  1. Here we study the variability in extracellular records of action potentials. Our work is motivated, in part, by the need to construct effective algorithms to classify single-unit waveforms from multiunit recordings. 2. We used microwire electrode pairs (stereotrodes) to record from primary somatosensory cortex of awake, behaving rat. Our data consist of continuous records of extracellular activity and segmented records of extracellular spikes. Spectral and principal component techniques are used to analyze mean single-unit wave-forms, the variability between different instances of a single-unit waveform, and the underlying background activity. 3. The spectrum of the variability between different instances of a single-unit waveforms is not white, and falls off above 1 kHz with a frequency dependence of roughly f-2. This spectrum is different from that of the mean spike waveforms, which falls off roughly as f-4, but is essentially identical with the spectrum of background activity. The spatial coherence of the variability on the 10-micron scale also falls off at high frequencies. 4. The variability between different instances of a single-unit waveform is dominated by a relatively small number of principal components. As a consequence, there is a large anisotropy in the cluster of the spike waveforms. 5. The background noise cannot be represented as a stationary Gaussian random process. In particular, we observed that the spectrum changes significantly between successive 20-ms intervals. Furthermore, the total power in the background activity exhibits larger fluctuations than is consistent with a stationary Gaussian random process. 6. Roughly half of the single-unit spike waveforms exhibit systematic changes as a function of the interspike interval. Although this results in a non-Gaussian distribution in the space of waveforms, the distribution can be modeled by a scalar function of the interspike interval. 7. We use a set of 44 mean single-unit waveforms to define the space of differences between spike waveforms. This characterization, together with that of the background activity, is used to construct a filter that optimizes the detection of differences between single-unit waveforms. Further, an information theoretic measure is defined that characterizes the detectability.
摘要
  1. 在此,我们研究动作电位细胞外记录的变异性。我们的工作部分是受构建有效算法以从多单元记录中分类单单元波形需求的推动。2. 我们使用微丝电极对(立体电极)从清醒、行为活跃的大鼠的初级体感皮层进行记录。我们的数据包括细胞外活动的连续记录和细胞外尖峰的分段记录。光谱和主成分技术用于分析平均单单元波形、单单元波形不同实例之间的变异性以及潜在的背景活动。3. 单单元波形不同实例之间变异性的频谱不是白噪声,并且在1千赫兹以上以大致f - 2的频率依赖性下降。该频谱与平均尖峰波形的频谱不同,平均尖峰波形的频谱大致以f - 4下降,但与背景活动的频谱基本相同。在10微米尺度上变异性的空间相干性在高频时也会下降。4. 单单元波形不同实例之间的变异性由相对较少数量的主成分主导。因此,尖峰波形簇存在很大的各向异性。5. 背景噪声不能表示为平稳高斯随机过程。特别是,我们观察到在连续的20毫秒间隔之间频谱有显著变化。此外,背景活动中的总功率表现出比平稳高斯随机过程更大的波动。6. 大约一半的单单元尖峰波形表现出作为峰峰间隔函数的系统性变化。尽管这导致波形空间中的非高斯分布,但该分布可以由峰峰间隔的标量函数建模。7. 我们使用一组44个平均单单元波形来定义尖峰波形之间差异的空间。这种特征描述与背景活动的特征描述一起用于构建一个滤波器,该滤波器优化单单元波形之间差异的检测。此外,定义了一种信息论度量来表征可检测性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验