Olaechea P M, Quintana J M, Gallardo M S, Insausti J, Maraví E, Alvarez B
Hospital de Galdakao, Galdakao, Vizcaya, Spain.
Intensive Care Med. 1996 Dec;22(12):1294-300. doi: 10.1007/BF01709541.
To create a predictive model for the treatment approach to community-acquired pneumonia (CAP) in patients needing Intensive Care Unit (ICU) admission.
Multicenter prospective study.
Twenty-six Spanish ICUs.
One hundred seven patients with CAP, all of them with accurate etiological diagnosis, divided in three groups according to their etiology in typical (bacterial pneumonia), Legionella and other atypical (Mycoplasma, Chlamydia spp. and virus). For the multivariate analysis we grouped Legionella and other atypical etiologies in the same category.
We recorded 34 variables including clinical characteristics, risk factors and radiographic pattern. We used a multivariate logistic regression analysis to find out a predictive model.
We have the complete data in 70 patients. Four variables: APACHE II, (categorized as a dummy variable) serum sodium and phosphorus and "length of symptoms" gave an accurate predictive model (c = 0.856). From the model we created a score that predicts typical pneumonia with a sensitivity of 90.2% and specificity 72.4%.
Our model is an attempt to help in the treatment approach to CAP in ICU patients based on a predictive model of basic clinical and laboratory information. Further studies, including larger numbers of patients, should validate and investigate the utility of this model in different clinical settings.
为需要入住重症监护病房(ICU)的社区获得性肺炎(CAP)患者创建一种治疗方法的预测模型。
多中心前瞻性研究。
26家西班牙ICU。
107例CAP患者,所有患者均有准确的病因诊断,根据病因分为三组:典型(细菌性肺炎)、军团菌及其他非典型(支原体、衣原体属和病毒)。在多变量分析中,我们将军团菌和其他非典型病因归为同一类别。
我们记录了34个变量,包括临床特征、危险因素和影像学表现。我们使用多变量逻辑回归分析来找出一个预测模型。
70例患者有完整数据。四个变量:急性生理与慢性健康状况评分系统II(APACHE II,分类为虚拟变量)、血清钠和磷以及“症状持续时间”给出了一个准确的预测模型(c = 0.856)。根据该模型,我们创建了一个预测典型肺炎的评分,其敏感性为90.2%,特异性为72.4%。
我们的模型旨在基于基本临床和实验室信息的预测模型,帮助指导ICU患者CAP的治疗方法。包括更多患者的进一步研究应验证并研究该模型在不同临床环境中的实用性。