Suppr超能文献

来自苋菜叶的甜菜碱醛脱氢酶能高效催化烟酰胺腺嘌呤二核苷酸(NAD)依赖的二甲基磺基丙醛氧化为二甲基磺基丙酸酯。

Betaine-aldehyde dehydrogenase from amaranth leaves efficiently catalyzes the NAD-dependent oxidation of dimethylsulfoniopropionaldehyde to dimethylsulfoniopropionate.

作者信息

Vojtechová M, Hanson A D, Muñoz-Clares R A

机构信息

Departamento de Bioquímica, Facultad de Química, Universidad NacionalAutonoma de México.

出版信息

Arch Biochem Biophys. 1997 Jan 1;337(1):81-8. doi: 10.1006/abbi.1996.9731.

Abstract

Many flowering plants accumulate the compatible osmolyte glycine betaine in response to osmotic stress, in certain cases together with its sulfonium analog 3-dimethylsulfoniopropionate (DMSP). Compared to glycine betaine, this DMSP accumulation appears to be an evolutionary novelty. The final step in the synthesis of glycine betaine and DMSP is oxidation of the corresponding aldehyde, betaine aldehyde or 3-dimethylsulfoniopropionaldehyde (DMSPald). Leaves of amaranth (Amaranthus hypochondriacus L.) accumulate glycine betaine but do not produce detectable amounts of DMSP. These leaves contain a betaine-aldehyde dehydrogenase (BADH) that catalyzes the final step in glycine betaine synthesis. Here we report that this enzyme efficiently catalyzes the oxidation of DMSPald. On the basis of Vmax/Km values, DMSPald is a better substrate for amaranth BADH than betaine aldehyde itself. The kinetic mechanism followed by amaranth BADH at low concentrations of DMSPald is similar to that with betaine aldehyde; as determined from initial velocity, product, dead-end, and substrate inhibition studies, it is a steady-state bi bi with ordered addition of substrates and random release of products. Like betaine aldehyde, DMSPald is inhibitory at high concentrations, at which a slower alternate route of substrate addition takes place. Our results indicate that the evolution of DMSP biosynthesis in flowering plants could have been facile in that it required no new aldehyde dehydrogenase; BADH may simply have been recruited for a novel function.

摘要

许多开花植物会在渗透胁迫下积累相容性渗透剂甘氨酸甜菜碱,在某些情况下还会与其锍类似物3-二甲基巯基丙酸内盐(DMSP)一起积累。与甘氨酸甜菜碱相比,这种DMSP的积累似乎是一种进化上的新现象。甘氨酸甜菜碱和DMSP合成的最后一步是相应醛(甜菜碱醛或3-二甲基巯基丙醛,即DMSPald)的氧化。苋菜(Amaranthus hypochondriacus L.)的叶子积累甘氨酸甜菜碱,但不会产生可检测量的DMSP。这些叶子含有一种甜菜碱醛脱氢酶(BADH),它催化甘氨酸甜菜碱合成的最后一步。在此我们报道,这种酶能有效地催化DMSPald的氧化。基于Vmax/Km值,DMSPald是苋菜BADH比甜菜碱醛本身更好的底物。苋菜BADH在低浓度DMSPald时遵循的动力学机制与甜菜碱醛相似;从初始速度、产物、终产物和底物抑制研究确定,它是一种稳态双底物双产物有序添加底物和随机释放产物的反应机制。与甜菜碱醛一样,DMSPald在高浓度时具有抑制作用,此时会发生较慢的底物添加替代途径。我们的结果表明,开花植物中DMSP生物合成的进化可能很容易,因为它不需要新的醛脱氢酶;BADH可能只是被赋予了一种新功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验