Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico Distrito Federal, Mexico.
Plant Physiol. 2012 Apr;158(4):1570-82. doi: 10.1104/pp.112.194514. Epub 2012 Feb 16.
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
植物醛脱氢酶 10(ALDH10)酶催化ω-伯或ω-季氨基醛的氧化,但有趣的是,只有一些酶,如菠菜(Spinacia oleracea)甜菜碱醛脱氢酶(SoBADH),能够有效地氧化甜菜碱醛(BAL)形成渗透保护剂甘氨酸甜菜碱(GB),从而赋予植物对渗透胁迫的耐受性。这里报道的 SoBADH 晶体结构显示,酪氨酸(Tyr)-160、色氨酸(Trp)-167、Trp-285 和 Trp-456 形成了一种适合与 BAL 的三甲铵基团进行阳离子-π相互作用的排列。这些残基突变为丙氨酸(Ala)会导致 BAL 的 K(m)(BAL)显著增加和 V(max)/K(m)(BAL)降低,尤其是在 Y160A 突变体中。严格保守于植物 ALDH10 中的 Tyr-160 和 Trp-456 形成了一个口袋,其中庞大的三甲铵基团结合。在 BADH 活性低的 ALDH10 中,这个空间会减小,因为异亮氨酸(Ile)将 Trp 推向 Tyr。而那些具有高 BADH 活性的则具有 Ala(SoBADH 中的 Ala-441)或半胱氨酸,它们为 BAL 的结合提供了足够的空间。因此,突变 A441I 使 SoBADH 的 V(max)/K(m)(BAL)降低了约 200 倍,而突变 A441C 则没有影响。在 A441I 或 A441C 突变体中,与其他 ω-氨基醛的动力学没有受到影响,这表明在一些植物 ALDH10 中,醛的第二相互作用球中存在 Ile 对于区分 BAL 是至关重要的。对已知序列的调查表明,植物有两种 ALDH10 同工酶:已知是 GB 积累者的同工酶具有高 BAL 亲和力的同工酶,在这个关键位置具有 Ala 或半胱氨酸,而非 GB 积累者的同工酶则具有低 BAL 亲和力的同工酶,其中含有 Ile。因此,BADH 活性似乎限制了非 GB 积累植物中 GB 的合成。