Suppr超能文献

探索植物醛脱氢酶10(ALDH10)酶获得甜菜碱醛脱氢酶活性的进化途径:对渗透保护剂甘氨酸甜菜碱合成的影响

Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine.

作者信息

Muñoz-Clares Rosario A, Riveros-Rosas Héctor, Garza-Ramos Georgina, González-Segura Lilian, Mújica-Jiménez Carlos, Julián-Sánchez Adriana

机构信息

Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D,F,, México.

出版信息

BMC Plant Biol. 2014 May 29;14:149. doi: 10.1186/1471-2229-14-149.

Abstract

BACKGROUND

Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s.

RESULTS

We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators have the peroxisomal C441-type, suggesting some limitations in the peroxisomal GB synthesis.

CONCLUSION

Our findings shed light on the evolution of the synthesis of GB in plants, a metabolic trait of most ecological and physiological relevance for their tolerance to drought, hypersaline soils and cold. Together, our results are consistent with smooth evolutionary pathways for the acquisition of the BADH function from ancestral I441-type AMADHs, thus explaining the relatively high occurrence of this event.

摘要

背景

植物醛脱氢酶10(ALDH10)是氨基醛脱氢酶(AMADHs),可氧化不同的ω-氨基或三甲基铵醛,但其中只有一些具有甜菜碱醛脱氢酶(BADH)活性并产生渗透保护剂甘氨酸甜菜碱(GB)。后一种酶在第441位(以菠菜酶SoBADH编号)具有丙氨酸或半胱氨酸,而那些不能氧化甜菜碱醛(BAL)的ALDH10在该位置具有异亮氨酸。只有含有A441型或C441型ALDH10同工酶的植物在渗透胁迫下才会积累GB。在这项工作中,我们探索了植物ALDH10获得BAL特异性的进化历史。

结果

我们进行了广泛的系统发育分析,并构建、表征了动力学和结构上的四种SoBADH变体,它们模拟了从I441型到A441型或C441型酶的进化途径中的简约中间体。所有突变体都具有正确的折叠、平均热稳定性以及与氨基丙醛相似的活性,但是A441S和A441T对BAL表现出显著活性,而A441V和A441F则没有。突变体的动力学与其通过建模获得的预测结构特征一致,并证实了第441位对BAL特异性的重要性。BADH活性的获得可能通过这些中间体中的任何一种发生,而不会损害原始功能或蛋白质稳定性。系统发育研究表明,这一事件在被子植物进化过程中独立发生了几次,当时一个ALDH10基因重复在两个连续的单突变中将关键的异亮氨酸残基变为丙氨酸或半胱氨酸。ALDH10同工酶在植物家族中经常分为两个进化枝:一个包括过氧化物酶体I441型,另一个包括过氧化物酶体和非过氧化物酶体I441型、A441型或C441型。有趣的是,高GB积累植物具有非过氧化物酶体A441型或C441型同工酶,而低GB积累植物具有过氧化物酶体C441型,这表明过氧化物酶体GB合成存在一些限制。

结论

我们的研究结果揭示了植物中GB合成的进化,这是一种对它们耐受干旱、高盐土壤和寒冷具有大多数生态和生理相关性的代谢特征。总之,我们的结果与从祖先I441型AMADHs获得BADH功能的平滑进化途径一致,从而解释了这一事件相对较高的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b96c/4046141/f71971a1d215/1471-2229-14-149-1.jpg

相似文献

8
Isolation and characterization of a novel peroxisomal choline monooxygenase in barley.
Planta. 2011 Dec;234(6):1215-26. doi: 10.1007/s00425-011-1478-9. Epub 2011 Jul 17.
9
Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr.
Physiol Plant. 2018 May;163(1):73-87. doi: 10.1111/ppl.12669. Epub 2018 Jan 18.

本文引用的文献

1
MMDB and VAST+: tracking structural similarities between macromolecular complexes.
Nucleic Acids Res. 2014 Jan;42(Database issue):D297-303. doi: 10.1093/nar/gkt1208. Epub 2013 Dec 6.
2
GenBank.
Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7. doi: 10.1093/nar/gkt1030. Epub 2013 Nov 11.
3
A cartography of the van der Waals territories.
Dalton Trans. 2013 Jun 28;42(24):8617-36. doi: 10.1039/c3dt50599e. Epub 2013 May 1.
4
Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate.
J Biol Chem. 2013 Mar 29;288(13):9491-507. doi: 10.1074/jbc.M112.443952. Epub 2013 Feb 13.
6
The RCSB Protein Data Bank: new resources for research and education.
Nucleic Acids Res. 2013 Jan;41(Database issue):D475-82. doi: 10.1093/nar/gks1200. Epub 2012 Nov 27.
7
Plant type ferredoxins and ferredoxin-dependent metabolism.
Plant Cell Environ. 2013 Jun;36(6):1071-84. doi: 10.1111/pce.12046. Epub 2013 Jan 7.
10
Phytozome: a comparative platform for green plant genomics.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86. doi: 10.1093/nar/gkr944. Epub 2011 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验