Suppr超能文献

内源性果糖代谢可解释沃伯格效应和 SGLT2 抑制剂在慢性肾脏病中的保护作用。

Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease.

机构信息

Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto, Japan.

Department of Biochemistry, Shiga University of Medical Science, Otsu, Japan.

出版信息

Front Immunol. 2021 Jun 16;12:694457. doi: 10.3389/fimmu.2021.694457. eCollection 2021.

Abstract

Chronic low-grade inflammation underlies the pathogenesis of non-communicable diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active process accompanied with biochemical changes involving energy, amino acid, lipid and nucleotides. Recently, glycolysis has been observed to be increased in several inflammatory disorders, including several types of kidney disease. However, the factors initiating glycolysis remains unclear. Added sugars containing fructose are present in nearly 70 percent of processed foods and have been implicated in the etiology of many non-communicable diseases. In the kidney, fructose is transported into the proximal tubules several transporters to mediate pathophysiological processes. Fructose can be generated in the kidney during glucose reabsorption (such as in diabetes) as well as from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides biosynthetic precursors for inflammation by switching the intracellular metabolic profile from mitochondrial oxidative phosphorylation to glycolysis despite the availability of oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A consequent accumulation of glycolytic intermediates connects to the production of biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased energy demand for the local inflammation. Here, we discuss the possibility of fructose and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD by reducing intrarenal glucose, and subsequently fructose levels.

摘要

慢性低度炎症是包括慢性肾脏病(CKD)在内的许多非传染性疾病的发病机制。炎症是一个伴随生化变化的生物活性过程,涉及能量、氨基酸、脂质和核苷酸。最近,人们观察到几种炎症性疾病(包括几种类型的肾病)的糖酵解增加。然而,启动糖酵解的因素尚不清楚。含有果糖的添加糖存在于近 70%的加工食品中,与许多非传染性疾病的病因有关。在肾脏中,果糖通过几种转运蛋白被转运到近端肾小管,以介导病理生理过程。果糖可以在肾脏中产生,如在糖尿病中葡萄糖重吸收时,以及在 CKD 中发生的肾内缺氧时。果糖代谢也通过将细胞内代谢谱从线粒体氧化磷酸化切换到糖酵解来提供炎症的生物合成前体,尽管有氧气存在,这类似于癌症中的瓦博格效应。重要的是,果糖代谢的副产物尿酸可能通过刺激炎症和抑制三羧酸循环中的顺乌头酸酶,在促进糖酵解方面发挥关键作用。随后糖酵解中间产物的积累与生物合成前体、蛋白质、脂质和核酸的产生相连,以满足局部炎症增加的能量需求。在这里,我们讨论了果糖和尿酸可能通过代谢转换在 CKD 中促进糖酵解的可能性。我们还建议钠-葡萄糖共转运蛋白 2(SGLT2)抑制剂通过减少肾内葡萄糖,进而降低果糖水平,可能会减缓 CKD 的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1454/8243983/2755a55e35ab/fimmu-12-694457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验