Richardson S, Leblond L
Institut National de la Santé et de la Recherche Medicale-U.170, Villejuif, France.
Stat Med. 1997;16(1-3):203-13. doi: 10.1002/(sici)1097-0258(19970130)16:2<203::aid-sim480>3.0.co;2-t.
In this paper we discuss some aspects of misspecification of prior distributions in the context of Bayesian modelling of measurement error problems. A Bayesian approach to the treatment of common measurement error situations encountered in epidemiology has been recently proposed. Its implementation involves, first, the structural specification, through conditional independence relationships, of three submodels-a measurement model, an exposure model and a disease model- and secondly, the choice of functional forms for the distributions involved in the submodels. We present some results indicating how the estimation of the regression parameters of interest, which is carried out using Gibbs sampling, can be influenced by a misspecification of the parametric shape of the prior distribution of exposure.
在本文中,我们讨论了在测量误差问题的贝叶斯建模背景下,先验分布误设的一些方面。最近有人提出了一种贝叶斯方法来处理流行病学中常见的测量误差情况。其实施首先涉及通过条件独立关系对三个子模型——测量模型、暴露模型和疾病模型——进行结构设定,其次涉及为子模型中所涉及的分布选择函数形式。我们给出了一些结果,这些结果表明使用吉布斯抽样对感兴趣的回归参数进行估计时,会如何受到暴露先验分布的参数形状误设的影响。