Richardson S, Gilks W R
Unité 170, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.
Am J Epidemiol. 1993 Sep 15;138(6):430-42. doi: 10.1093/oxfordjournals.aje.a116875.
Risk factors used in epidemiology are often measured with error which can seriously affect the assessment of the relation between risk factors and disease outcome. In this paper, a Bayesian perspective on measurement error problems in epidemiology is taken and it is shown how the information available in this setting can be structured in terms of conditional independence models. The modeling of common designs used in the presence of measurement error (validation group, repeated measures, ancillary data) is described. The authors indicate how Bayesian estimation can be carried out in these settings using Gibbs sampling, a sampling technique which is being increasingly referred to in statistical and biomedical applications. The method is illustrated by analyzing a design with two measuring instruments and no validation group.
流行病学中使用的风险因素常常存在测量误差,这会严重影响对风险因素与疾病结局之间关系的评估。本文从贝叶斯视角探讨流行病学中的测量误差问题,并展示了如何根据条件独立模型来构建此情形下的可用信息。文中描述了在存在测量误差时常用设计(验证组、重复测量、辅助数据)的建模方法。作者指出了如何在这些情形下使用吉布斯抽样进行贝叶斯估计,吉布斯抽样是一种在统计和生物医学应用中越来越常用的抽样技术。通过分析一种使用两种测量仪器且无验证组的设计来说明该方法。