Suppr超能文献

蛋白质中螺旋结构的N端结构

Structures of N-termini of helices in proteins.

作者信息

Doig A J, MacArthur M W, Stapley B J, Thornton J M

机构信息

Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, United Kingdom.

出版信息

Protein Sci. 1997 Jan;6(1):147-55. doi: 10.1002/pro.5560060117.

Abstract

We have surveyed 393 N-termini of alpha-helices and 156 N-termini of 3(10)-helices in 85 high resolution, non-homologous protein crystal structures for N-cap side-chain rotamer preferences, hydrogen bonding patterns, and solvent accessibilities. We find very strong rotamer preferences that are unique to N-cap sites. The following rules are generally observed for N-capping in alpha-helices: Thr and Ser N-cap side chains adopt the gauche - rotamer, hydrogen bond to the N3 NH and have psi restricted to 164 +/- 8 degrees. Asp and Asn N-cap side chains either adopt the gauche - rotamer and hydrogen bond to the N3 NH with psi = 172 +/- 10 degrees, or adopt the trans rotamer and hydrogen bond to both the N2 and N3 NH groups with psi = 1-7 +/- 19 degrees. With all other N-caps, the side chain is found in the gauche + rotamer so that the side chain does not interact unfavorably with the N-terminus by blocking solvation and psi is unrestricted. An i, i + 3 hydrogen bond from N3 NH to the N-cap backbone C = O in more likely to form at the N-terminus when an unfavorable N-cap is present. In the 3(10)-helix Asn and Asp remain favorable N-caps as they can hydrogen bond to the N2 NH while in the trans rotamer; in contrast, Ser and Thr are disfavored as their preferred hydrogen bonding partner (N3 NH) is inaccessible. This suggests that Ser is the optimum choice of N-cap when alpha-helix formation is to be encouraged while 3(10)-helix formation discouraged. The strong energetic and structural preferences found for N-caps, which differ greatly from positions within helix interiors, suggest that N-caps should be treated explicitly in any consideration of helical structure in peptides or proteins.

摘要

我们在85个高分辨率、非同源蛋白质晶体结构中,对α-螺旋的393个N端和3(10)-螺旋的156个N端进行了调查,以研究N-帽侧链旋转异构体偏好、氢键模式和溶剂可及性。我们发现了N-帽位点特有的非常强烈的旋转异构体偏好。对于α-螺旋中的N-帽封端,通常遵循以下规则:苏氨酸(Thr)和丝氨酸(Ser)的N-帽侧链采用gauche-旋转异构体,与N3 NH形成氢键,且ψ角限制在164±8度。天冬氨酸(Asp)和天冬酰胺(Asn)的N-帽侧链要么采用gauche-旋转异构体,与N3 NH形成氢键,ψ = 172±10度,要么采用反式旋转异构体,与N2和N3 NH基团都形成氢键,ψ = 17±19度。对于所有其他N-帽,侧链处于gauche+旋转异构体,这样侧链不会通过阻碍溶剂化而与N端产生不利相互作用,且ψ角不受限制。当存在不利的N-帽时,N3 NH与N-帽主链C=O之间更有可能在N端形成i,i + 3氢键。在3(10)-螺旋中,天冬酰胺(Asn)和天冬氨酸(Asp)仍然是有利的N-帽,因为它们在反式旋转异构体中可以与N2 NH形成氢键;相比之下,丝氨酸(Ser)和苏氨酸(Thr)则不利,因为它们首选的氢键伙伴(N3 NH)无法接近。这表明,当要促进α-螺旋形成而抑制3(10)-螺旋形成时,丝氨酸是N-帽的最佳选择。N-帽所具有的强烈能量和结构偏好与螺旋内部的位置有很大不同,这表明在考虑肽或蛋白质的螺旋结构时,应明确考虑N-帽。

相似文献

1
Structures of N-termini of helices in proteins.蛋白质中螺旋结构的N端结构
Protein Sci. 1997 Jan;6(1):147-55. doi: 10.1002/pro.5560060117.
2
Side-chain structures in the first turn of the alpha-helix.α-螺旋第一圈中的侧链结构。
J Mol Biol. 1999 Mar 19;287(1):127-43. doi: 10.1006/jmbi.1998.2549.
10
Capping and alpha-helix stability.
Nature. 1989 Nov 16;342(6247):296-9. doi: 10.1038/342296a0.

引用本文的文献

2
The Iconic α-Helix: From Pauling to the Present.标志性的α-螺旋:从鲍林到现在。
Methods Mol Biol. 2025;2867:1-17. doi: 10.1007/978-1-0716-4196-5_1.

本文引用的文献

1
Side-chain conformational entropy in protein folding.蛋白质折叠中的侧链构象熵。
Protein Sci. 1995 Nov;4(11):2247-51. doi: 10.1002/pro.5560041101.
8
Stabilization of alpha-helix in C-terminal fragments of neuropeptide Y.神经肽Y C端片段中α-螺旋的稳定性
Biochem Biophys Res Commun. 1993 Nov 15;196(3):1490-5. doi: 10.1006/bbrc.1993.2420.
10
Satisfying hydrogen bonding potential in proteins.满足蛋白质中的氢键形成潜力。
J Mol Biol. 1994 May 20;238(5):777-93. doi: 10.1006/jmbi.1994.1334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验