Lanzilotta W N, Fisher K, Seefeldt L C
Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
J Biol Chem. 1997 Feb 14;272(7):4157-65. doi: 10.1074/jbc.272.7.4157.
Nitrogenase-catalyzed substrate reduction reactions require the association of the iron (Fe) protein and the molybdenum-iron (MoFe) protein, electron transfer from the Fe protein to the MoFe protein coupled to the hydrolysis of MgATP, followed by protein-protein complex dissociation. This work examines the role of MgATP hydrolysis and electron transfer in the dissociation of the Fe protein-MoFe protein complex. Alteration of aspartate 39 to asparagine (D39N) in the nucleotide binding site of Azotobacter vinelandii Fe protein by site-directed mutagenesis resulted in an Fe protein-MoFe protein complex that did not dissociate after electron transfer. While the D39N Fe protein-MoFe protein complex was inactive in all substrate reduction reactions, the complex catalyzed both reductant-dependent and reductant-independent MgATP hydrolysis. Once docked to the MoFe protein, the D39N Fe protein was found to transfer one electron to the MoFe protein requiring MgATP hydrolysis, with an apparent first order rate constant of 0.02 s-1 compared with 140 s-1 for the wild-type Fe protein. Only following electron transfer to the MoFe protein did the D39N Fe protein form a tight complex with the MoFe protein, with no detectable dissociation rate. This was in contrast with the dissociation rate constant of the wild-type Fe protein from the MoFe protein following electron transfer of 5 s-1. Chemically oxidized D39N Fe protein with MgADP-bound did not form a tight complex with the MoFe protein, showing a dissociation rate similar to chemically oxidized wild-type Fe protein (3 s-1 for D39N Fe protein and 6 s-1 for wild-type Fe protein). These results suggest that electron transfer from the Fe protein to the MoFe protein within the protein-protein complex normally induces conformational changes which increase the affinity of the Fe protein for the MoFe protein. A model is presented in which Asp-39 participates in a nucleotide signal transduction pathway involved in component protein-protein dissociation.
固氮酶催化的底物还原反应需要铁(Fe)蛋白和钼铁(MoFe)蛋白结合,电子从Fe蛋白转移到MoFe蛋白并与MgATP水解偶联,随后蛋白质 - 蛋白质复合物解离。这项工作研究了MgATP水解和电子转移在Fe蛋白 - MoFe蛋白复合物解离中的作用。通过定点诱变将棕色固氮菌Fe蛋白核苷酸结合位点中的天冬氨酸39改变为天冬酰胺(D39N),产生了一种Fe蛋白 - MoFe蛋白复合物,该复合物在电子转移后不会解离。虽然D39N Fe蛋白 - MoFe蛋白复合物在所有底物还原反应中均无活性,但该复合物催化了依赖于还原剂和不依赖于还原剂的MgATP水解。一旦与MoFe蛋白对接,发现D39N Fe蛋白将一个电子转移到MoFe蛋白需要MgATP水解,表观一级速率常数为0.02 s-1,而野生型Fe蛋白为140 s-1。只有在电子转移到MoFe蛋白之后,D39N Fe蛋白才与MoFe蛋白形成紧密复合物,没有可检测到的解离速率。这与电子转移后野生型Fe蛋白从MoFe蛋白的解离速率常数5 s-1形成对比。结合MgADP的化学氧化D39N Fe蛋白不会与MoFe蛋白形成紧密复合物,显示出与化学氧化野生型Fe蛋白相似的解离速率(D39N Fe蛋白为3 s-1,野生型Fe蛋白为6 s-1)。这些结果表明,蛋白质 - 蛋白质复合物中从Fe蛋白到MoFe蛋白的电子转移通常会诱导构象变化,从而增加Fe蛋白对MoFe蛋白的亲和力。提出了一个模型,其中天冬氨酸-39参与了涉及组分蛋白质 - 蛋白质解离的核苷酸信号转导途径。