Suppr超能文献

CIN 3/癌之前的宫颈涂片阴性。采用PAPNET检测系统进行重新评估。

Negative cervical smears before CIN 3/carcinoma. Reevaluation with the PAPNET Testing System.

作者信息

Doornewaard H, van de Seijp H, Woudt J M, van der Graaf Y, van den Tweel J G

机构信息

Department of Pathology, Utrecht University, The Netherlands.

出版信息

Acta Cytol. 1997 Jan-Feb;41(1):74-8. doi: 10.1159/000332308.

Abstract

OBJECTIVE

To test the effectiveness of the PAPNET testing system in identifying false negative smears, using archival cervical cytologic smears from women with histologically proven diagnoses of high grade lesions and carcinoma of the uterine cervix.

STUDY DESIGN

Forty-six negative smears from women who developed a high grade cervical intraepithelial lesion (CIN 3) or carcinoma of the uterine cervix within three years were retrieved from the archives, plus 20 consecutive control smears for each case. The smears were analyzed with the PAPNET testing system, and the selected cells were reviewed by a cytotechnologist using a strict protocol.

RESULTS

With the PAPNET testing system, 9 of 46 (20%) smears were positive. Seven were reclassified as low grade and two reclassified as high grade squamous intraepithelial lesion (SIL). One of the 31 initially positive smears in the control group of 920 smears was not recognized as such. In the control group of 889 negative smears, 14 newly identified positive cases (1.6%) were detected, all low grade SIL.

CONCLUSION

The PAPNET testing system is a good tool for detecting false negative smears and, when used as an adjunct to conventional screening, can reduce the false negative rate.

摘要

目的

使用经组织学证实患有高级别病变和宫颈癌的女性的存档宫颈细胞学涂片,测试PAPNET检测系统在识别假阴性涂片方面的有效性。

研究设计

从存档中检索出46例在三年内发展为高级别宫颈上皮内瘤变(CIN 3)或宫颈癌的女性的阴性涂片,每个病例再加上20例连续的对照涂片。使用PAPNET检测系统对涂片进行分析,选定的细胞由细胞技术专家按照严格方案进行复查。

结果

使用PAPNET检测系统,46例涂片中9例(20%)呈阳性。7例重新分类为低级别,2例重新分类为高级别鳞状上皮内病变(SIL)。在920例涂片的对照组中,31例最初呈阳性的涂片中1例未被识别为阳性。在889例阴性涂片的对照组中,检测到14例新识别的阳性病例(1.6%),均为低级别SIL。

结论

PAPNET检测系统是检测假阴性涂片的良好工具,作为传统筛查的辅助手段使用时,可降低假阴性率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验