Greenwald P
Division of Cancer Prevention and Control, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Cell Biochem Suppl. 1996;25:29-36.
Many anticipate that application of findings in molecular genetics will help to achieve greater precision in defining high-risk populations that may benefit from chemopreventive interventions. We must recognize, however, that genetic susceptibility, environmental factors, and complex gene-environment interactions are all likely to be risk determinants for most cancers. Cohort studies of twins and cancer indicate that having "identical" genes is generally not a very accurate predictor of cancer incidence. Data from twin studies support the suggestion that environmental factors such as tobacco use significantly influence cancer risk. The complexities of the genetic contribution to disease risk are exemplified by the development of Duchenne muscular dystrophy in only one of monozygotic twin girls, hypothesized to be the result of X chromosome inactivation, with the distribution patterns of the X chromosome being skewed to the female X in the manifesting twin and to the male X in the normal twin. Evidence from transgenic and genetic-environmental studies in animals support the possibility of genetic-environmental interactions. Calorie restriction modifies tumor expression in p53 knockout mice; a high-fat, low-calcium, low-vitamin D diet increases prepolyp hyperplasia formation in Apc-mutated mice; and calorie restriction early in life influences development of obesity in the genetically obese Zucker rat (fafa). Such environmental modulation of gene expression suggests that chemoprevention has the potential to reduce risk for both environmentally and genetically determined cancers. In view of the growing research efforts in chemoprevention, the NCI has developed a Prevention Trials Decision Network (PTDN) to formalize the evaluation and approval process for large-scale chemoprevention trials. The PTDN addresses large trial prioritization and the associated issues of minority recruitment and retention; identification and validation of biomarkers as intermediate endpoints for cancer; and chemopreventive agent selection and development. A comprehensive database is being established to support the PTDN's decision-making process and will help to determine which agents investigated in preclinical and early phase clinical trials should move to large-scale testing. Cohorts for large-scale chemoprevention trials include individuals who are determined to be at high risk as a result of genetic predisposition, carcinogenic exposure, or the presence of biomarkers indicative of increased risk. Current large-scale trials in well-defined, high-risk populations include the Breast Cancer Prevention Trial (tamoxifen), the Prostate Cancer Prevention Trial (finasteride), and the N-(4-hydroxyphenyl) retinamide (4-HPR) breast cancer prevention study being conducted in Milan. Biomarker studies will provide valuable information for refining the design and facilitating the implementation of future large-scale trials. For example, potential biomarkers are being assessed at biopsy in women with ductal carcinoma in situ (DCIS). The women are then randomized to either placebo, tamoxifen, 4-HPR, or tamoxifen plus 4-HPR for 2-4 weeks, at which time surgery is performed and the biomarkers reassessed to determine biomarker modulation by the interventions. For prostate cancer, modulation of prostatic intraepithelial neoplasia (PIN) by 4-HPR and difluoromethylornithine is being investigated; similar studies are being planned for oltipraz, dehydroepiandrosterone, and vitamin E plus selenomethionine. The validation of biomarkers as surrogate endpoints for cancer incidence in high-risk cohorts will allow more agents to be evaluated in shorter studies that use fewer subjects to achieve the desired statistical power.
许多人预计,分子遗传学研究成果的应用将有助于更精确地界定那些可能从化学预防干预措施中受益的高危人群。然而,我们必须认识到,遗传易感性、环境因素以及复杂的基因 - 环境相互作用都可能是大多数癌症的风险决定因素。对双胞胎与癌症的队列研究表明,拥有“相同”基因通常并非癌症发病率的准确预测指标。双胞胎研究的数据支持了如下观点:诸如吸烟等环境因素会显著影响癌症风险。仅在一对同卵双胞胎女孩中的一个身上发生杜兴氏肌营养不良症,就例证了基因对疾病风险影响的复杂性。据推测,这是X染色体失活的结果,在患病双胞胎中,X染色体的分布模式偏向女性X染色体,而在正常双胞胎中则偏向男性X染色体。动物转基因和基因 - 环境研究的证据支持了基因 - 环境相互作用的可能性。热量限制可改变p53基因敲除小鼠的肿瘤表达;高脂肪、低钙、低维生素D饮食会增加Apc基因变异小鼠的息肉前期增生形成;生命早期的热量限制会影响遗传性肥胖的 Zucker 大鼠(fafa)的肥胖发展。这种基因表达的环境调节表明,化学预防有可能降低环境因素和遗传因素导致的癌症风险。鉴于在化学预防方面的研究工作不断增加,美国国立癌症研究所(NCI)已建立了一个预防试验决策网络(PTDN),以使大规模化学预防试验的评估和审批过程正规化。PTDN解决大规模试验的优先级以及少数群体招募和留存的相关问题;将生物标志物识别和验证为癌症的中间终点;以及化学预防剂的选择和研发。正在建立一个综合数据库,以支持PTDN的决策过程,并将有助于确定哪些在临床前和早期临床试验中研究的药物应进入大规模测试阶段。大规模化学预防试验的队列包括因遗传易感性、致癌物质暴露或存在表明风险增加的生物标志物而被确定为高危人群的个体。目前在明确界定的高危人群中进行的大规模试验包括乳腺癌预防试验(他莫昔芬)、前列腺癌预防试验(非那雄胺)以及正在米兰进行的N - (4 - 羟基苯基)视黄酰胺(4 - HPR)乳腺癌预防研究。生物标志物研究将为完善未来大规模试验的设计和促进其实施提供有价值的信息。例如,正在对原位导管癌(DCIS)女性进行活检时评估潜在的生物标志物。然后将这些女性随机分为接受安慰剂、他莫昔芬、4 - HPR或他莫昔芬加4 - HPR治疗2 - 4周,届时进行手术并重新评估生物标志物,以确定干预措施对生物标志物的调节作用。对于前列腺癌,正在研究4 - HPR和二氟甲基鸟氨酸对前列腺上皮内瘤变(PIN)的调节作用;正在计划对奥替普拉、脱氢表雄酮以及维生素E加硒代蛋氨酸进行类似研究。在高危队列中将生物标志物验证为癌症发病率的替代终点,将使更多药物能够在更短的研究中进行评估,这些研究使用更少的受试者就能达到所需的统计效力。