Sparrer H, Rutkat K, Buchner J
Institut für Biophysik & Physikalische Biochemie, Universität Regensburg, Germany.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1096-100. doi: 10.1073/pnas.94.4.1096.
The GroE chaperones of Escherichia coli assist protein folding under physiological and heat shock conditions in an ATP-dependent way. Although a number of details of assisted folding have been elucidated, the molecular mechanism of the GroE cycle remains unresolved. Here we present an experimental system that allows the direct analysis of the GroE-mediated folding cycle under stringent conditions. We demonstrate that the GroE proteins efficiently catalyze the folding of kinetically trapped folding intermediates of a mutant of maltose-binding protein (MBP Y283D) in an ATP-dependent way. GroES plays a key role in this reaction cycle, accelerating the folding of the substrate protein MBP Y283D up to 50-fold. Interestingly, catalysis of the folding reaction requires the formation of symmetrical football-shaped GroEL x GroES2 particles and the intermediate release of the nonnative protein from the chaperone complex. Our results show that, in the presence of GroES, the complex architecture of the GroEL toroids allows maintenance of two highly interregulated rings simultaneously active in protein folding.
大肠杆菌的GroE伴侣蛋白在生理和热休克条件下以ATP依赖的方式协助蛋白质折叠。尽管已经阐明了辅助折叠的许多细节,但GroE循环的分子机制仍未解决。在此,我们展示了一个实验系统,该系统能够在严格条件下直接分析GroE介导的折叠循环。我们证明,GroE蛋白以ATP依赖的方式有效催化麦芽糖结合蛋白(MBP Y283D)突变体的动力学捕获折叠中间体的折叠。GroES在这个反应循环中起关键作用,将底物蛋白MBP Y283D的折叠加速高达50倍。有趣的是,折叠反应的催化需要形成对称的足球形GroEL x GroES2颗粒,以及非天然蛋白从伴侣蛋白复合物中的中间释放。我们的结果表明,在GroES存在的情况下,GroEL环的复杂结构允许维持两个高度相互调节的环同时在蛋白质折叠中发挥作用。