Suppr超能文献

利用神经网络预测蛋白质的亚细胞定位。

Using neural networks for prediction of the subcellular location of proteins.

作者信息

Reinhardt A, Hubbard T

机构信息

The Sanger Centre, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.

出版信息

Nucleic Acids Res. 1998 May 1;26(9):2230-6. doi: 10.1093/nar/26.9.2230.

Abstract

Neural networks have been trained to predict the subcellular location of proteins in prokaryotic or eukaryotic cells from their amino acid composition. For three possible subcellular locations in prokaryotic organisms a prediction accuracy of 81% can be achieved. Assigning a reliability index, 33% of the predictions can be made with an accuracy of 91%. For eukaryotic proteins (excluding plant sequences) an overall prediction accuracy of 66% for four locations was achieved, with 33% of the sequences being predicted with an accuracy of 82% or better. With the subcellular location restricting a protein's possible function, this method should be a useful tool for the systematic analysis of genome data and is available via a server on the world wide web.

摘要

神经网络已被训练用于根据蛋白质的氨基酸组成预测其在原核生物或真核生物细胞中的亚细胞定位。对于原核生物中三种可能的亚细胞定位,预测准确率可达81%。若赋予可靠性指标,33%的预测准确率可达91%。对于真核生物蛋白质(不包括植物序列),四个定位的总体预测准确率为66%,其中33%的序列预测准确率达到82%或更高。由于亚细胞定位限制了蛋白质的可能功能,该方法应是系统分析基因组数据的有用工具,可通过万维网上的服务器获取。

相似文献

5
Using neural networks for prediction of subcellular location of prokaryotic and eukaryotic proteins.
Mol Cell Biol Res Commun. 2000 Sep;4(3):172-3. doi: 10.1006/mcbr.2001.0269.

引用本文的文献

3
Protein Sorting Prediction.蛋白质分拣预测。
Methods Mol Biol. 2024;2715:27-63. doi: 10.1007/978-1-0716-3445-5_2.

本文引用的文献

1
Relation between amino acid composition and cellular location of proteins.
J Mol Biol. 1997 Feb 28;266(3):594-600. doi: 10.1006/jmbi.1996.0804.
9
Transmembrane helices predicted at 95% accuracy.预测的跨膜螺旋准确率达95%。
Protein Sci. 1995 Mar;4(3):521-33. doi: 10.1002/pro.5560040318.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验