Teich M C, Heneghan C, Lowen S B, Ozaki T, Kaplan E
Department of Electrical and Computer Engineering, Boston University, Massachusetts 02215, USA.
J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529-46. doi: 10.1364/josaa.14.000529.
We used a variety of statistical measures to identify the point process that describes the maintained discharge of retinal ganglion cells (RGC's) and neurons in the lateral geniculate nucleus (LGN) of the cat. These measures are based on both interevent intervals and event counts and include the interevent-interval histogram, rescaled range analysis, the event-number histogram, the Fano factor, Allan factor, and the periodogram. In addition, we applied these measures to surrogate versions of the data, generated by random shuffling of the order of interevent intervals. The continuing statistics reveal 1/f-type fluctuations in the data (long-duration power-law correlation), which are not present in the shuffled data. Estimates of the fractal exponents measured for RGC- and their target LGN-spike trains are similar in value, indicating that the fractal behavior either is transmitted form one cell to the other or has a common origin. The gamma-r renewal process model, often used in the analysis of visual-neuron interevent intervals, describes certain short-term features of the RGC and LGN data reasonably well but fails to account for the long-duration correlation. We present a new model for visual-system nerve-spike firings: a gamma-r renewal process whose mean is modulated by fractal binomial noise. This fractal, doubly stochastic point process characterizes the statistical behavior of both RGC and LGN data sets remarkably well.
我们使用了多种统计方法来识别描述猫视网膜神经节细胞(RGC)和外侧膝状体核(LGN)中神经元持续放电的点过程。这些方法基于事件间隔和事件计数,包括事件间隔直方图、重标极差分析、事件数直方图、法诺因子、艾伦因子和周期图。此外,我们将这些方法应用于通过随机打乱事件间隔顺序生成的数据替代版本。连续统计揭示了数据中的1/f型波动(长持续时间幂律相关性),而在打乱的数据中不存在这种波动。对RGC及其目标LGN尖峰序列测量的分形指数估计值相似,表明分形行为要么从一个细胞传递到另一个细胞,要么有共同的起源。常用于分析视觉神经元事件间隔的伽马-r更新过程模型,能较好地描述RGC和LGN数据的某些短期特征,但无法解释长持续时间相关性。我们提出了一种用于视觉系统神经尖峰放电的新模型:一种均值由分形二项噪声调制的伽马-r更新过程。这种分形的双随机点过程能非常好地表征RGC和LGN数据集的统计行为。