Suppr超能文献

枯草芽孢杆菌的CotM是应激蛋白α-晶状体蛋白家族的成员,在发育过程中被诱导,并参与孢子外被的形成。

CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation.

作者信息

Henriques A O, Beall B W, Moran C P

机构信息

Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA 30322, USA.

出版信息

J Bacteriol. 1997 Mar;179(6):1887-97. doi: 10.1128/jb.179.6.1887-1897.1997.

Abstract

We cloned and characterized a gene, cotM, that resides in the 173 degrees region of the Bacillus subtilis chromosome and is involved in spore outer coat assembly. We found that expression of the cotM gene is induced during development under sigma K control and is negatively regulated by the GerE transcription factor. Disruption of the cotM gene resulted in spores with an abnormal pattern of coat proteins. Electron microscopy revealed that the outer coat in cotM mutant spores had lost its multilayered type of organization, presenting a diffuse appearance. In particular, significant amounts of material were absent from the outer coat layers, which in some areas had a lamellar structure more typical of the inner coat. Occasionally, a pattern of closely spaced ridges protruding from its surface was observed. No deficiency associated with the inner coat or any other spore structure was found. CotM is related to the alpha-crystallin family of low-molecular-weight heat shock proteins, members of which can be substrates for transglutaminase-mediated protein cross-linking. CotM was not detected among the extractable spore coat proteins. These observations are consistent with a model according to which CotM is part of a cross-linked insoluble skeleton that surrounds the spore, serves as a matrix for the assembly of additional outer coat material, and confers structural stability to the final structure.

摘要

我们克隆并鉴定了一个基因cotM,它位于枯草芽孢杆菌染色体的173°区域,参与孢子外壁组装。我们发现,cotM基因的表达在σK控制下的发育过程中被诱导,并受到GerE转录因子的负调控。cotM基因的破坏导致孢子的外壁蛋白模式异常。电子显微镜显示,cotM突变体孢子的外壁失去了多层结构组织,呈现出弥散的外观。特别是,外壁层中大量物质缺失,在某些区域具有更典型的内壁层状结构。偶尔,会观察到从其表面突出的紧密间隔的脊状图案。未发现与内壁或任何其他孢子结构相关的缺陷。CotM与低分子量热休克蛋白的α-晶状体蛋白家族相关,该家族成员可以是转谷氨酰胺酶介导的蛋白质交联的底物。在可提取的孢子外壁蛋白中未检测到CotM。这些观察结果与一个模型一致,根据该模型,CotM是围绕孢子的交联不溶性骨架的一部分,作为额外外壁材料组装的基质,并赋予最终结构结构稳定性。

相似文献

4
Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat.
J Bacteriol. 1993 Mar;175(6):1705-16. doi: 10.1128/jb.175.6.1705-1716.1993.
6
Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis.
J Bacteriol. 2005 Nov;187(22):7753-64. doi: 10.1128/JB.187.22.7753-7764.2005.
7
Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores.
J Bacteriol. 1999 Aug;181(16):4986-94. doi: 10.1128/JB.181.16.4986-4994.1999.
8
Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat.
J Bacteriol. 2004 Mar;186(5):1462-74. doi: 10.1128/JB.186.5.1462-1474.2004.
9
Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis.
J Gen Microbiol. 1983 Jun;129(6):1945-58. doi: 10.1099/00221287-129-6-1945.

引用本文的文献

1
Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence?
Cell Stress Chaperones. 2023 Jan;28(1):21-33. doi: 10.1007/s12192-022-01308-7. Epub 2022 Nov 11.
2
Identification of Native Cross-Links in Spore Coat Proteins.
J Proteome Res. 2021 Mar 5;20(3):1809-1816. doi: 10.1021/acs.jproteome.1c00025. Epub 2021 Feb 17.
4
Contributions of crust proteins to spore surface properties in Bacillus subtilis.
Mol Microbiol. 2019 Mar;111(3):825-843. doi: 10.1111/mmi.14194. Epub 2019 Jan 30.
5
A genomic signature and the identification of new sporulation genes.
J Bacteriol. 2013 May;195(9):2101-15. doi: 10.1128/JB.02110-12. Epub 2013 Feb 8.
6
The Bacillus subtilis endospore: assembly and functions of the multilayered coat.
Nat Rev Microbiol. 2013 Jan;11(1):33-44. doi: 10.1038/nrmicro2921. Epub 2012 Dec 3.
7
Identification of interaction partners of the dynamin-like protein DynA from Bacillus subtilis.
Commun Integr Biol. 2012 Jul 1;5(4):362-9. doi: 10.4161/cib.20215.
9
The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.
Mol Microbiol. 2009 Nov;74(3):634-49. doi: 10.1111/j.1365-2958.2009.06886.x. Epub 2009 Sep 22.

本文引用的文献

1
Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation.
Mol Microbiol. 1996 Sep;21(5):913-24. doi: 10.1046/j.1365-2958.1996.461408.x.
2
Bacillus subtilis spore coat assembly requires cotH gene expression.
J Bacteriol. 1996 Aug;178(15):4375-80. doi: 10.1128/jb.178.15.4375-4380.1996.
6
Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.
Microbiol Rev. 1993 Mar;57(1):1-33. doi: 10.1128/mr.57.1.1-33.1993.
7
Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat.
J Bacteriol. 1993 Mar;175(6):1705-16. doi: 10.1128/jb.175.6.1705-1716.1993.
8
The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation.
Biochem J. 1993 Sep 1;294 ( Pt 2)(Pt 2):435-8. doi: 10.1042/bj2940435.
10
An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes.
Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6047-51. doi: 10.1073/pnas.90.13.6047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验