Suppr超能文献

新月柄杆菌中细胞分裂周期基因的鉴定、表征及染色体组织

Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus.

作者信息

Ohta N, Ninfa A J, Allaire A, Kulick L, Newton A

机构信息

Department of Molecular Biology, Princeton University, New Jersey 08544, USA.

出版信息

J Bacteriol. 1997 Apr;179(7):2169-80. doi: 10.1128/jb.179.7.2169-2180.1997.

Abstract

We report a detailed characterization of cell division cycle (cdc) genes in the differentiating gram-negative bacterium Caulobacter crescentus. A large set of temperature-sensitive cdc mutations was isolated after treatment with the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine. Analysis of independently isolated mutants at the nonpermissive temperature identified a variety of well-defined terminal phenotypes, including long filamentous cells blocked at various stages of the cell division cycle and two unusual classes of mutants with defects in both cell growth and division. The latter strains are uniformly arrested as either short bagel-shaped coils or large predivisional cells. The polar morphology of these cdc mutants supports the hypothesis that normal cell cycle progression is directly responsible for developmental regulation in C. crescentus. Genetic and physical mapping of the conditional cdc mutations and the previously characterized dna and div mutations identified at least 21 genes that are required for normal cell cycle progression. Although most of these genes are widely scattered, the genetically linked divA, divB, and divE genes were shown by genetic complementation and physical mapping to be organized in one gene cluster at 3200 units on the chromosome. DNA sequence analysis and marker rescue experiments demonstrated that divE is the C. crescentus ftsA homolog and that the ftsZ gene maps immediately adjacent to ftsA. On the basis of these results, we suggest that the C. crescentus divA-divB-divE(ftsA)-ftsZ gene cluster corresponds to the 2-min fts gene cluster of Escherichia coli.

摘要

我们报道了对革兰氏阴性细菌新月柄杆菌分化过程中细胞分裂周期(cdc)基因的详细表征。在用化学诱变剂N-甲基-N'-硝基-N-亚硝基胍处理后,分离出了一大组温度敏感型cdc突变体。在非允许温度下对独立分离的突变体进行分析,确定了各种明确的终末表型,包括在细胞分裂周期不同阶段受阻的长丝状细胞,以及两类在细胞生长和分裂方面均有缺陷的异常突变体。后一类菌株均停滞为短的百吉饼状螺旋体或大的前分裂细胞。这些cdc突变体的极性形态支持了这样一种假说,即正常的细胞周期进程直接负责新月柄杆菌的发育调控。对条件性cdc突变以及先前表征的dna和div突变进行遗传和物理图谱分析,确定了至少21个正常细胞周期进程所需的基因。尽管这些基因大多广泛分散,但通过遗传互补和物理图谱分析表明,遗传连锁的divA、divB和divE基因在染色体上3200单位处组织成一个基因簇。DNA序列分析和标记拯救实验表明,divE是新月柄杆菌ftsA的同源物,ftsZ基因紧邻ftsA定位。基于这些结果,我们认为新月柄杆菌的divA-divB-divE(ftsA)-ftsZ基因簇对应于大肠杆菌的2分钟fts基因簇。

相似文献

3
Cell cycle arrest of a Caulobacter crescentus secA mutant.
J Bacteriol. 1994 Aug;176(16):4958-65. doi: 10.1128/jb.176.16.4958-4965.1994.
4
Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle.
Mol Microbiol. 1998 May;28(3):421-34. doi: 10.1046/j.1365-2958.1998.00753.x.
6
Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus.
Mol Microbiol. 2004 Oct;54(1):60-74. doi: 10.1111/j.1365-2958.2004.04251.x.
8
9
Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
J Bacteriol. 2001 Jan;183(2):725-35. doi: 10.1128/JB.183.2.725-735.2001.
10
Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus.
J Mol Biol. 1992 Aug 20;226(4):959-77. doi: 10.1016/0022-2836(92)91045-q.

引用本文的文献

1
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30.
2
A CRISPR interference platform for selective downregulation of gene expression in .
Appl Environ Microbiol. 2021 Mar 1;87(4). doi: 10.1128/AEM.02519-20. Epub 2020 Nov 30.
3
Untargeted metabolomics links glutathione to bacterial cell cycle progression.
Nat Metab. 2020 Feb;2(2):153-166. doi: 10.1038/s42255-019-0166-0. Epub 2020 Feb 3.
5
A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.
Mol Microbiol. 2016 Jul;101(2):265-80. doi: 10.1111/mmi.13388. Epub 2016 May 3.
6
The coding and noncoding architecture of the Caulobacter crescentus genome.
PLoS Genet. 2014 Jul 31;10(7):e1004463. doi: 10.1371/journal.pgen.1004463. eCollection 2014 Jul.
7
Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.
J Bacteriol. 2013 Oct;195(19):4527-35. doi: 10.1128/JB.00600-13. Epub 2013 Aug 9.
8
Assembly of the Caulobacter cell division machine.
Mol Microbiol. 2011 Jun;80(6):1680-98. doi: 10.1111/j.1365-2958.2011.07677.x. Epub 2011 May 17.
10
Getting in the loop: regulation of development in Caulobacter crescentus.
Microbiol Mol Biol Rev. 2010 Mar;74(1):13-41. doi: 10.1128/MMBR.00040-09.

本文引用的文献

1
Hfr formation directed by tn10.
Genetics. 1979 Apr;91(4):639-55. doi: 10.1093/genetics/91.4.639.
2
Generalized Transduction in CAULOBACTER CRESCENTUS.
Genetics. 1977 Nov;87(3):391-9. doi: 10.1093/genetics/87.3.391.
3
Signal transduction in the cell cycle regulation of Caulobacter differentiation.
Trends Microbiol. 1996 Aug;4(8):326-32. doi: 10.1016/0966-842x(96)10050-0.
4
Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter.
Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6314-9. doi: 10.1073/pnas.93.13.6314.
5
Cell cycle control by an essential bacterial two-component signal transduction protein.
Cell. 1996 Jan 12;84(1):83-93. doi: 10.1016/s0092-8674(00)80995-2.
6
Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.
Microbiol Rev. 1993 Mar;57(1):1-33. doi: 10.1128/mr.57.1.1-33.1993.
7
A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus.
Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):630-4. doi: 10.1073/pnas.90.2.630.
8
The cell cycle of Escherichia coli.
Annu Rev Microbiol. 1993;47:199-230. doi: 10.1146/annurev.mi.47.100193.001215.
9
The expression of asymmetry during Caulobacter cell differentiation.
Annu Rev Biochem. 1994;63:419-50. doi: 10.1146/annurev.bi.63.070194.002223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验