Agmon N, Edelstein A L
Department of Physical Chemistry, Hebrew University, Jerusalem, Israel.
Biophys J. 1997 Apr;72(4):1582-94. doi: 10.1016/S0006-3495(97)78805-2.
Binding kinetics of receptor arrays can differ dramatically from that of the isolated receptor. We simulate synaptic transmission using a microscopically accurate Brownian dynamics routine. We study the factors governing the rise and decay of the activation probability as a function of the number of transmitter molecules released. Using a realistic receptor array geometry, the simulation reproduces the time course of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents. A consistent interpretation of experimentally observed synaptic currents in terms of rebinding and spatial correlations is discussed.
受体阵列的结合动力学可能与孤立受体的结合动力学有显著差异。我们使用微观精确的布朗动力学程序模拟突触传递。我们研究了作为释放的递质分子数量函数的激活概率上升和衰减的控制因素。通过使用逼真的受体阵列几何结构,该模拟重现了α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体介导的兴奋性突触后电流的时间进程。本文讨论了根据再结合和空间相关性对实验观察到的突触电流进行的一致解释。