Suppr超能文献

解决流行病学时间序列中污染物共线性的一些方法。

Some methods to address collinearity among pollutants in epidemiological time series.

作者信息

Pitard A, Viel J F

机构信息

Department of Public Health, Faculty of Medicine, Besançon, France.

出版信息

Stat Med. 1997 Mar 15;16(5):527-44. doi: 10.1002/(sici)1097-0258(19970315)16:5<527::aid-sim429>3.0.co;2-c.

Abstract

The aim of this paper is to provide accurate estimation methods for regression models used in epidemiological time series to deduce quantitative morbidity relationships. Such models often include highly correlated variables (pollutant levels and climatic conditions) as well as lagged and unlagged values of the same variables (which also show a high collinearity due to the stochastic dependency of consecutive measurements). We first describe some methods to detect and assess multicollinearity. We recall the drawbacks of usual methods of estimation, and then after briefly mentioning traditional solutions, we explore three alternative methods accounting for multicollinearity: Sclove's estimation; Almon's method; and a combination of Almon's method and principal components procedure. We compare these methods in obtaining efficient estimators on environmental epidemiological data (children's hospital admissions as dependent variable and unlagged and lagged values of outdoor temperature, SO2, NO and CO as explanatory variables.

摘要

本文旨在为流行病学时间序列中用于推导定量发病关系的回归模型提供准确的估计方法。此类模型通常包含高度相关的变量(污染物水平和气候条件)以及同一变量的滞后和非滞后值(由于连续测量的随机依赖性,这些值也呈现出高度共线性)。我们首先描述一些检测和评估多重共线性的方法。我们回顾常用估计方法的缺点,然后在简要提及传统解决方案后,探讨三种考虑多重共线性的替代方法:斯克洛维估计法;阿尔蒙方法;以及阿尔蒙方法与主成分法的结合。我们比较这些方法在获取环境流行病学数据有效估计量方面的情况(以儿童医院入院人数为因变量,以室外温度、二氧化硫、一氧化氮和一氧化碳的非滞后和滞后值为解释变量)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验