Suppr超能文献

关联脉冲神经网络模型与决策扩散模型。

Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.

作者信息

Umakantha Akash, Purcell Braden A, Palmeri Thomas J

机构信息

Neuroscience Institute, Carnegie Mellon University.

Machine Learning Department, Carnegie Mellon University.

出版信息

Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.

Abstract

Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated "experiment", we generated "data" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.

摘要

许多决策模型都假定证据积累至阈值是预测反应概率和反应时间的核心机制。一种脉冲神经网络模型(Wang,2002)在具有兴奋性和抑制性连接的生物物理上合理的神经元池层面实例化了这些机制,并且有许多模型参数通过生理测量进行调整。扩散模型(Ratcliff,1978)是一种认知模型,可适用于一系列行为和条件。我们研究了认知层面扩散模型的参数如何与神经层面脉冲模型的参数相关。在每个模拟的“实验”中,我们通过将选择难度的操纵(通过脉冲模型的输入)与脉冲模型的一个核心参数的操纵进行因子组合,从脉冲神经网络生成“数据”。然后我们将扩散模型拟合到这些模拟数据,以观察脉冲模型每个核心参数的操纵如何映射到拟合的漂移率、反应阈值和非决策时间上。脉冲模型中与输入敏感性、阈值和刺激处理时间相关的参数操纵映射到扩散模型中的概念类似物,即漂移率、阈值和非决策时间。脉冲模型中与扩散模型无直接类似物的参数操纵,即非刺激特异性背景输入、递归兴奋强度和受体电导,映射到扩散模型中的阈值。我们讨论了这些结果对将扩散模型拟合到行为数据的解释的影响。

相似文献

1
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.关联脉冲神经网络模型与决策扩散模型。
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.
2
Goal-Directed Decision Making with Spiking Neurons.基于脉冲神经元的目标导向决策
J Neurosci. 2016 Feb 3;36(5):1529-46. doi: 10.1523/JNEUROSCI.2854-15.2016.
7
Modeling the BOLD correlates of competitive neural dynamics.建立竞争神经动力学的 BOLD 相关模型。
Neural Netw. 2014 Jan;49:1-10. doi: 10.1016/j.neunet.2013.09.001. Epub 2013 Sep 12.

本文引用的文献

2
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
4
Model-based cognitive neuroscience.基于模型的认知神经科学。
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.
5
Bridging Neural and Computational Viewpoints on Perceptual Decision-Making.桥接关于感知决策的神经和计算观点。
Trends Neurosci. 2018 Nov;41(11):838-852. doi: 10.1016/j.tins.2018.06.005. Epub 2018 Jul 12.
6
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS.关联累加器模型参数与神经动力学
J Math Psychol. 2017 Feb;76(B):156-171. doi: 10.1016/j.jmp.2016.07.001. Epub 2016 Aug 1.
7
Modelling individual difference in visual categorization.视觉分类中个体差异的建模。
Vis cogn. 2016;24(3):260-283. doi: 10.1080/13506285.2016.1236053. Epub 2016 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验