Umakantha Akash, Purcell Braden A, Palmeri Thomas J
Neuroscience Institute, Carnegie Mellon University.
Machine Learning Department, Carnegie Mellon University.
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.
Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated "experiment", we generated "data" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.
许多决策模型都假定证据积累至阈值是预测反应概率和反应时间的核心机制。一种脉冲神经网络模型(Wang,2002)在具有兴奋性和抑制性连接的生物物理上合理的神经元池层面实例化了这些机制,并且有许多模型参数通过生理测量进行调整。扩散模型(Ratcliff,1978)是一种认知模型,可适用于一系列行为和条件。我们研究了认知层面扩散模型的参数如何与神经层面脉冲模型的参数相关。在每个模拟的“实验”中,我们通过将选择难度的操纵(通过脉冲模型的输入)与脉冲模型的一个核心参数的操纵进行因子组合,从脉冲神经网络生成“数据”。然后我们将扩散模型拟合到这些模拟数据,以观察脉冲模型每个核心参数的操纵如何映射到拟合的漂移率、反应阈值和非决策时间上。脉冲模型中与输入敏感性、阈值和刺激处理时间相关的参数操纵映射到扩散模型中的概念类似物,即漂移率、阈值和非决策时间。脉冲模型中与扩散模型无直接类似物的参数操纵,即非刺激特异性背景输入、递归兴奋强度和受体电导,映射到扩散模型中的阈值。我们讨论了这些结果对将扩散模型拟合到行为数据的解释的影响。