Denisov V P, Halle B
Department of Chemistry, Lund University, Sweden.
Faraday Discuss. 1996(103):227-44. doi: 10.1039/fd9960300227.
Water oxygen-17 and deuteron spin relaxation rates, measured as a function of resonance frequency, have been used to study the dynamics of protein hydration in aqueous solutions of ribonuclease A, lysozyme, myoglobin, trypsin and serum albumin. The relaxation data conform to the picture of protein hydration dynamics, proposed on the basis of previous studies of smaller proteins, where the long-lived water molecules responsible for the relaxation dispersion are identified with a small number of integrat water molecules seen in the crystal structures. These integral water molecules, with residence times in the range 10(-9)-10(-3) s, are either buried in internal cavities, trapped in narrow clefts or coordinated to metal ions. For the water molecules in the traditional hydration layer at the protein surface, the relaxation data suggest an average residence time in the range 10-50 ps, consistent with high-resolution 1H spectroscopy and computer simulations. The relaxation data also reveal some more specific features of protein hydration, relating to hydration of cavities that appear empty by crystallography, entrapment of water between structural domains of large proteins and subnanosecond 180 degrees flips in buried water clusters.
作为共振频率的函数测量得到的水的氧 - 17和氘核自旋弛豫率,已被用于研究核糖核酸酶A、溶菌酶、肌红蛋白、胰蛋白酶和血清白蛋白水溶液中蛋白质水化的动力学。弛豫数据符合基于先前对较小蛋白质的研究提出的蛋白质水化动力学图景,其中负责弛豫色散的长寿命水分子与晶体结构中看到的少数整合水分子一致。这些整合水分子的停留时间在10^(-9) - 10^(-3)秒范围内,要么埋在内腔中,困在狭窄的裂缝中,要么与金属离子配位。对于蛋白质表面传统水化层中的水分子,弛豫数据表明平均停留时间在10 - 50皮秒范围内,这与高分辨率的1H光谱和计算机模拟结果一致。弛豫数据还揭示了蛋白质水化的一些更具体的特征,涉及晶体学显示为空的腔的水化、大蛋白质结构域之间水的截留以及埋藏水簇中亚纳秒级的180度翻转。