Suppr超能文献

来自奶牛的混合瘤胃细菌的葡萄糖转运

Glucose transport by mixed ruminal bacteria from a cow.

作者信息

Kajikawa H, Amari M, Masaki S

机构信息

Department of Animal Nutrition, National Institute of Animal Industry, Ibaraki, Japan.

出版信息

Appl Environ Microbiol. 1997 May;63(5):1847-51. doi: 10.1128/aem.63.5.1847-1851.1997.

Abstract

The glucose transport of mixed ruminal bacteria harvested from a holstein cow fed 5.0 kg of Italian ryegrass and 1.5 kg of flaked corn a day was investigated. The Eadie-Hofstee plot characterized two transport systems: a high-affinity, low-velocity system and a low-affinity, high-velocity system. The former system (K(m) = 16 microM; Vmax = 2.2 nmol/min/mg of protein) is considered dominant under this feeding condition based on the glucose concentration in the rumen (< 1 mM). In light of the facts that the protonophore SF6847 and the lipophilic triphenylmethyl phosphonium ion had no effect on the high-affinity system and an artificially generated proton gradient and electrical potential across the cell membrane did not increase glucose transport, a proton motive force is not be involved in the system. On the other hand, from the facts that chlorhexidine inhibited about 90% of the high-affinity system while iodoacetate showed no significant effect, and a high phosphoenolpyruvate-dependent phosphorylation of glucose was actually shown, the phosphoenolpyruvate-dependent phosphotransferase system is considered the main system in the high-affinity system. Moreover, as shown by the facts that harmaline inhibited about 30% of the high-affinity system and the artificially generated sodium gradient across the cell membrane significantly stimulated glucose transport, this system also includes sodium symport to some degree. The high-affinity system was sensitive to a decrease in pH (< 6.5) and was inhibited by the presence of sucrose, mannose, and fructose.

摘要

对一头每天饲喂5.0千克意大利黑麦草和1.5千克压片玉米的荷斯坦奶牛采集的混合瘤胃细菌的葡萄糖转运进行了研究。伊迪-霍夫斯泰因图表征了两种转运系统:一种高亲和力、低速度系统和一种低亲和力、高速度系统。基于瘤胃中的葡萄糖浓度(<1 mM),在这种饲养条件下,前一种系统(K(m)=16 microM;Vmax = 2.2 nmol/分钟/毫克蛋白质)被认为占主导地位。鉴于质子载体SF6847和亲脂性三苯基甲基鏻离子对高亲和力系统没有影响,并且跨细胞膜人为产生的质子梯度和电势并没有增加葡萄糖转运,质子动力势不参与该系统。另一方面,鉴于洗必泰抑制了约90%的高亲和力系统,而碘乙酸没有显著影响,并且实际上显示了葡萄糖的高磷酸烯醇丙酮酸依赖性磷酸化,磷酸烯醇丙酮酸依赖性磷酸转移酶系统被认为是高亲和力系统中的主要系统。此外,如哈马灵抑制了约30%的高亲和力系统以及跨细胞膜人为产生的钠梯度显著刺激葡萄糖转运这一事实所示,该系统在一定程度上还包括钠同向转运。高亲和力系统对pH降低(<6.5)敏感,并受到蔗糖、甘露糖和果糖的抑制。

相似文献

1
Glucose transport by mixed ruminal bacteria from a cow.
Appl Environ Microbiol. 1997 May;63(5):1847-51. doi: 10.1128/aem.63.5.1847-1851.1997.
2
Cellobiose transport by mixed ruminal bacteria from a Cow.
Appl Environ Microbiol. 1999 Jun;65(6):2565-9. doi: 10.1128/AEM.65.6.2565-2569.1999.
3
Inhibition of glucose transport in human erythrocytes by 2,3-dioxoindole (isatin).
Experientia. 1994 Sep 15;50(9):833-6. doi: 10.1007/BF01956465.
5
Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength.
Appl Environ Microbiol. 1991 Jan;57(1):248-54. doi: 10.1128/aem.57.1.248-254.1991.
8
Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems.
Appl Environ Microbiol. 1997 Feb;63(2):543-6. doi: 10.1128/aem.63.2.543-546.1997.
9
Nutrient transport by ruminal bacteria: a review.
J Anim Sci. 1994 Nov;72(11):3019-31. doi: 10.2527/1994.72113019x.
10
Strategies of nutrient transport by ruminal bacteria.
J Dairy Sci. 1990 Oct;73(10):2996-3012. doi: 10.3168/jds.S0022-0302(90)78987-4.

引用本文的文献

1
Exploration of metabolite profiles in the biofluids of dairy cows by proton nuclear magnetic resonance analysis.
PLoS One. 2021 Jan 29;16(1):e0246290. doi: 10.1371/journal.pone.0246290. eCollection 2021.
2
Maximizing efficiency of rumen microbial protein production.
Front Microbiol. 2015 May 15;6:465. doi: 10.3389/fmicb.2015.00465. eCollection 2015.
3
Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.
Appl Environ Microbiol. 2015 Mar;81(5):1832-8. doi: 10.1128/AEM.03736-14. Epub 2014 Dec 29.
4
Quantifying the responses of mixed rumen microbes to excess carbohydrate.
Appl Environ Microbiol. 2013 Jun;79(12):3786-95. doi: 10.1128/AEM.00482-13. Epub 2013 Apr 12.
5
Microbial cellulose utilization: fundamentals and biotechnology.
Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents. doi: 10.1128/MMBR.66.3.506-577.2002.
6
Cellobiose transport by mixed ruminal bacteria from a Cow.
Appl Environ Microbiol. 1999 Jun;65(6):2565-9. doi: 10.1128/AEM.65.6.2565-2569.1999.

本文引用的文献

1
Digestion of barley, maize, and wheat by selected species of ruminal bacteria.
Appl Environ Microbiol. 1990 Oct;56(10):3146-53. doi: 10.1128/aem.56.10.3146-3153.1990.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
6
Nutrient transport by ruminal bacteria: a review.
J Anim Sci. 1994 Nov;72(11):3019-31. doi: 10.2527/1994.72113019x.
7
Carbohydrate transport in bacteria.
Microbiol Rev. 1980 Sep;44(3):385-418. doi: 10.1128/mr.44.3.385-418.1980.
9
Harmaline, a potent inhibitor of sodium-dependent transport.
Biochim Biophys Acta. 1974 Dec 24;373(3):527-31. doi: 10.1016/0005-2736(74)90035-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验