Virkamäki A, Daniels M C, Hämäläinen S, Utriainen T, McClain D, Yki-Järvinen H
Minerva Foundation Institute for Medical Research, University of Helsinki, Finland.
Endocrinology. 1997 Jun;138(6):2501-7. doi: 10.1210/endo.138.6.5172.
We determined the effect of infusion of glucosamine (GlcN), which bypasses the rate limiting reaction in the hexosamine pathway, on insulin-stimulated rates of glucose uptake and glycogen synthesis in vivo in rat tissues varying with respect to their glutamine:fructose-6-phosphate amidotransferase (GFA) activity. Three groups of conscious fasted rats received 6-h infusions of either saline (BAS), insulin (18 mU/kg x min) and saline (INS), or insulin and GlcN (30 micromol/ kg x min, GLCN). [3-(3)H]glucose was infused to trace whole body glucose kinetics and glycogen synthesis, and rates of tissue glucose uptake were determined using a bolus injection of [1-(14)C]2-deoxyglucose at 315 min. GlcN decreased insulin-stimulated glucose uptake (315-360 min) by 49% (P < 0.001) at the level of the whole body, and by 31-53% (P < 0.05 or less) in the heart, epididymal fat, submandibular gland and in soleus, abdominis and gastrocnemius muscles. GlcN completely abolished glycogen synthesis in the liver. GlcN decreased insulin-stimulated glucose uptake similarly in the submandibular gland (1.3 +/- 0.2 vs. 2.0 +/- 0.3 nmol/mg protein x min, GLCN vs. INS, P < 0.05) and gastrocnemius muscle (1.4 +/- 0.3 vs. 3.1 +/- 0.5 nmol/mg protein x min), although the activity of the hexosamine pathway, as judged from basal GFA activity, was 10-fold higher in the submandibular gland (286 +/- 35 pmol/mg protein x min) than in gastrocnemius muscle (27 +/- 3 pmol/mg protein x min, P < 0.001). These data raise the possibility that overactivity of the hexosamine pathway may contribute to glucose toxicity not only in skeletal muscle but also in other insulin sensitive tissues. They also imply that the magnitude of insulin resistance induced between tissues is determined by factors other than GFA.
我们研究了氨基葡萄糖(GlcN)输注对大鼠组织中胰岛素刺激的葡萄糖摄取和糖原合成速率的影响,氨基葡萄糖可绕过己糖胺途径中的限速反应,不同大鼠组织的谷氨酰胺:6-磷酸果糖氨基转移酶(GFA)活性有所差异。三组清醒禁食大鼠分别接受6小时的生理盐水输注(BAS)、胰岛素(18 mU/kg·min)和生理盐水输注(INS)或胰岛素和GlcN(30 μmol/kg·min,GLCN)。输注[3-(³)H]葡萄糖以追踪全身葡萄糖动力学和糖原合成,并在315分钟时通过推注[1-(¹⁴)C]2-脱氧葡萄糖来测定组织葡萄糖摄取速率。GlcN在全身水平使胰岛素刺激的葡萄糖摄取(315 - 360分钟)降低了49%(P < 0.001),在心脏、附睾脂肪、颌下腺以及比目鱼肌、腹直肌和腓肠肌中降低了31% - 53%(P < 0.05或更低)。GlcN完全抑制了肝脏中的糖原合成。在颌下腺(1.3 ± 0.2对2.0 ± 0.3 nmol/mg蛋白质·min,GLCN对INS,P < 0.05)和腓肠肌(1.4 ± 0.3对3.1 ± 0.5 nmol/mg蛋白质·min)中,GlcN同样降低了胰岛素刺激的葡萄糖摄取,尽管从基础GFA活性判断,颌下腺(286 ± 35 pmol/mg蛋白质·min)中的己糖胺途径活性比腓肠肌(27 ± 3 pmol/mg蛋白质·min,P < 0.001)高10倍。这些数据提示,己糖胺途径的过度活跃不仅可能导致骨骼肌,还可能导致其他胰岛素敏感组织出现葡萄糖毒性。它们还表明,不同组织间诱导产生的胰岛素抵抗程度是由GFA以外的因素决定的。