Moss J, Zolkiewska A, Okazaki I
Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Adv Exp Med Biol. 1997;419:25-33. doi: 10.1007/978-1-4419-8632-0_3.
Mono-ADP-ribosylation is a reversible modification of arginine residues in proteins, with NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases constituting opposing arms of a putative ADP-ribosylation cycle. The enzymatic components of an ADP-ribosylation cycle have been identified in both prokaryotic and eukaryotic systems. The regulatory significance of the cycle has been best documented in prokaryotes. As shown by Ludden and coworkers, ADP-ribosylation controls the activity of dinitrogenase reductase in the phototropic bacterium Rhodospirillum rubrum. ADP-ribosylation of other amino acids, such as cysteine, has also been demonstrated, lending credence to the hypothesis that this modification is heterogeneous. In eukaryotes, the functional relationship between ADP-ribosyltransferases and ADP-ribosylarginine hydrolases is less well documented. The transferase-catalyzed reaction results in sterospecific formation of alpha-ADP-ribosylarginine from beta-NAD; ADP-ribosylarginine hydrolases specifically cleave the alpha-anomer, leading to release of ADP-ribose and regeneration of the free guanidino group of arginine. The two reactions can thus be coupled in vitro. Coupling in vivo is dependent on cellular localization. The deduced amino acid sequences of ADP-ribosyltransferases from avian and mammalian tissues have common consensus sequences involved in catalytic activity but, in some instances, enzyme-specific cellular localization signals. The presence of amino- and carboxy-terminal signal sequences is consistent with the glycosylphosphatidylinositol(GPI)-anchoring to the cell surface. The muscle and lymphocyte transferases ADP-ribosylate integrins. Some transferases lack the carboxy- terminal signal sequence needed for GPI-anchoring. Most ADP-ribosylarginine hydrolase activity is cytosolic, although perhaps some is located at the cell surface. Deduced amino acid sequences of hydrolases from a number of mammalian species are consistent with their cytoplasmic localization. Katada and coworkers have determined, however, that auto-ADP-ribosylated RT6, a GPI-linked protein, is metabolized by a hydrolase-like activity, consistent with the existence of an ADP-ribosylation cycle. ADP-ribosyl RT6 may be internalized, thereby coming in contact with the cytosolic hydrolase; alternatively, a novel form of the hydrolase may be located at the surface. The mechanism of coupling of ADP-ribosyltransferases and hydrolases in eukaryotic ADP-ribosylation cycles has yet to be clarified.
单(ADP - 核糖)基化是蛋白质中精氨酸残基的一种可逆修饰,烟酰胺腺嘌呤二核苷酸(NAD):精氨酸ADP - 核糖基转移酶和ADP - 核糖基精氨酸水解酶构成了假定的ADP - 核糖基化循环的两个相反分支。ADP - 核糖基化循环的酶成分已在原核生物和真核生物系统中得到鉴定。该循环的调节意义在原核生物中已有最充分的文献记载。正如Ludden及其同事所表明的,ADP - 核糖基化控制着光合细菌红螺菌中固氮酶还原酶的活性。其他氨基酸如半胱氨酸的ADP - 核糖基化也已得到证实,这支持了这种修饰是异质性的假说。在真核生物中,ADP - 核糖基转移酶和ADP - 核糖基精氨酸水解酶之间的功能关系文献记载较少。转移酶催化的反应导致从β - NAD立体特异性形成α - ADP - 核糖基精氨酸;ADP - 核糖基精氨酸水解酶特异性切割α - 异头物,导致ADP - 核糖释放和精氨酸游离胍基的再生。因此,这两个反应可以在体外偶联。体内偶联取决于细胞定位。来自禽类和哺乳动物组织的ADP - 核糖基转移酶推导的氨基酸序列具有参与催化活性的共同共有序列,但在某些情况下还有酶特异性的细胞定位信号。氨基和羧基末端信号序列的存在与糖基磷脂酰肌醇(GPI)锚定到细胞表面一致。肌肉和淋巴细胞转移酶使整合素发生ADP - 核糖基化。一些转移酶缺乏GPI锚定所需的羧基末端信号序列。大多数ADP - 核糖基精氨酸水解酶活性存在于胞质溶胶中,尽管可能有些位于细胞表面。来自许多哺乳动物物种的水解酶推导的氨基酸序列与它们的细胞质定位一致。然而,Katada及其同事已经确定,自身ADP - 核糖基化的RT6(一种GPI连接蛋白)可被类似水解酶的活性代谢,这与ADP - 核糖基化循环的存在一致。ADP - 核糖基化的RT6可能被内化,从而与胞质溶胶中的水解酶接触;或者,一种新型的水解酶可能位于细胞表面。真核生物ADP - 核糖基化循环中ADP - 核糖基转移酶和水解酶的偶联机制尚待阐明。