Suppr超能文献

ARH 和 Macrodomain 家族的 α-ADP-ribose-acceptor 水解酶催化 α-NAD 水解。

The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD Hydrolysis.

出版信息

ACS Chem Biol. 2019 Dec 20;14(12):2576-2584. doi: 10.1021/acschembio.9b00429. Epub 2019 Nov 6.

Abstract

ADP-ribosyltransferases transfer ADP-ribose from β-NAD to acceptors; ADP-ribosylated acceptors are cleaved by ADP-ribosyl-acceptor hydrolases (ARHs) and proteins containing ADP-ribose-binding modules termed macrodomains. On the basis of the ADP-ribosyl-arginine hydrolase 1 (ARH1) stereospecific hydrolysis of α-ADP-ribosyl-arginine and the hypothesis that α-NAD is generated as a side product of β-NAD/ NADH metabolism, we proposed that α-NAD was a substrate of ARHs and macrodomain proteins. Here, we report that ARH1, ARH3, and macrodomain proteins (i.e., MacroD1, MacroD2, C6orf130 (TARG1), Af1521, hydrolyzed α-NAD but not β-NAD. ARH3 had the highest α-NADase specific activity. The ARH and macrodomain protein families, in stereospecific reactions, cleave ADP-ribose linkages to N- or O- containing functional groups; anomerization of α- to β-forms (e.g., α-ADP-ribosyl-arginine to β-ADP-ribose- (arginine) protein) may explain partial hydrolysis of ADP-ribosylated acceptors with an increase in content of ADP-ribosylated substrates. Af1521 and ARH3 crystal structures with bound ADP-ribose revealed similar ADP-ribose-binding pockets with the catalytic residues of the ARH and macrodomain protein families in the N-terminal helix and loop. Although the biological roles of the ARHs and macrodomain proteins differ, they share enzymatic and structural properties that may regulate metabolites such as α-NAD.

摘要

ADP-核糖基转移酶将 ADP-核糖从 β-NAD 转移到受体上;ADP-核糖基受体被 ADP-核糖基受体水解酶(ARHs)和含有 ADP-核糖结合模块的蛋白质(称为宏结构域)切割。基于 ADP-核糖基精氨酸水解酶 1(ARH1)对 α-ADP-核糖基精氨酸的立体特异性水解,以及假设 α-NAD 是 β-NAD/NADH 代谢的副产物生成的,我们假设 α-NAD 是 ARHs 和宏结构域蛋白的底物。在这里,我们报告 ARH1、ARH3 和宏结构域蛋白(即 MacroD1、MacroD2、C6orf130(TARG1)、Af1521)水解 α-NAD,但不水解 β-NAD。ARH3 具有最高的 α-NADase 比活性。在立体特异性反应中,ARH 和宏结构域蛋白家族切割 ADP-核糖键连接到含有 N 或 O 的功能基团;α-异构体到 β-异构体的互变(例如,α-ADP-核糖基精氨酸到 β-ADP-核糖基(精氨酸)蛋白)可能解释了 ADP-核糖基化受体的部分水解,同时 ADP-核糖基化底物的含量增加。与结合的 ADP-核糖的 Af1521 和 ARH3 晶体结构揭示了具有相似的 ADP-核糖结合口袋,具有 ARH 和宏结构域蛋白家族的催化残基在 N 端螺旋和环中。尽管 ARHs 和宏结构域蛋白的生物学作用不同,但它们具有酶和结构特性,可能调节代谢物如 α-NAD。

相似文献

2
ARH Family of ADP-Ribose-Acceptor Hydrolases.ARH 家族的 ADP-核糖-受体水解酶。
Cells. 2022 Nov 30;11(23):3853. doi: 10.3390/cells11233853.
3
Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.ADP-核糖基受体水解酶ARH家族的结构与功能。
DNA Repair (Amst). 2014 Nov;23:88-94. doi: 10.1016/j.dnarep.2014.03.005. Epub 2014 Apr 18.

引用本文的文献

8
ARH Family of ADP-Ribose-Acceptor Hydrolases.ARH 家族的 ADP-核糖-受体水解酶。
Cells. 2022 Nov 30;11(23):3853. doi: 10.3390/cells11233853.

本文引用的文献

1
Reversible ADP-ribosylation of RNA.RNA 的可逆 ADP-ribosylation。
Nucleic Acids Res. 2019 Jun 20;47(11):5658-5669. doi: 10.1093/nar/gkz305.
10
Specificity of reversible ADP-ribosylation and regulation of cellular processes.ADP-核糖基化的特异性及其对细胞过程的调控。
Crit Rev Biochem Mol Biol. 2018 Feb;53(1):64-82. doi: 10.1080/10409238.2017.1394265. Epub 2017 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验