Ampe F, Uribelarrea J L, Aragao G M, Lindley N D
Centre de Bioingénierie Gilbert Durand, Institut National des Sciences Appliquées, Unité Mixte de Recherche CNRS 5044, Toulouse, France. ampe;
Appl Environ Microbiol. 1997 Jul;63(7):2765-70. doi: 10.1128/aem.63.7.2765-2770.1997.
During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction.
在富营养产碱杆菌以苯甲酸盐加琥珀酸盐混合物进行分批培养期间,底物同时被代谢,导致比使用单一底物时更高的比生长速率(μ = 0.56 h⁻¹)(单独使用苯甲酸盐时μ = 0.51 h⁻¹,单独使用琥珀酸盐时μ = 0.44 h⁻¹),且不影响生长得率(0.57 Cmol/Cmol)。通量分布分析表明,琥珀酸脱氢酶很可能控制着总琥珀酸消耗速率(最大通量为9.7 mmol·g⁻¹·h⁻¹)。据推测,每种底物的相对消耗速率部分与基因表达水平的改变有关,但在很大程度上取决于β-酮己二酸途径的终产物琥珀酸的存在。实际上,该反应的副产物琥珀酸会抑制体外β-酮己二酸-琥珀酰辅酶A转移酶的活性。