Morris L G, Hooper S L
Neurobiology Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA.
J Neurosci. 1997 Aug 1;17(15):5956-71. doi: 10.1523/JNEUROSCI.17-15-05956.1997.
We aimed to determine the neuronal parameters controlling the contraction of slowly contracting, non-twitch ("tonic") muscles driven by rhythmic neuronal activity. These muscles are almost completely absent in mammals but are common in lower vertebrates and invertebrates. Slow muscles are often believed to function primarily in tonic motor patterns. However, previous research and data presented here indicate that slow muscles are also driven by rhythmic neuronal inputs. In rapidly contracting "twitch" muscles, motor unit force is believed to be primarily determined by motor neuron spike frequency. What determines slow muscle output is less well understood. We present a simple model that suggests that when motor neuron burst duration is brief compared with muscle summation time, spike number, not spike frequency, determines slow muscle contraction amplitude. We present analyses that distinguish between spike number and spike frequency dependence in two slow muscles in the lobster stomatogastric system. Our analysis shows that, functionally, one muscle is spike number dependent, whereas the other is primarily spike frequency dependent. Thus, both of these parameters can determine slow muscle output. To predict the movements elicited by neuronal activity in preparations in which slow muscles are common, it may be necessary to determine spike number versus spike frequency dependence for each muscle. Spike number dependence couples motor neuron burst duration and spike frequency in that changing either parameter alone alters spike number (and hence muscle contraction amplitude). Neural networks innervating spike number-dependent muscles may therefore have specific properties to compensate for the complexity intrinsic to spike number coding.
我们旨在确定控制由节律性神经元活动驱动的缓慢收缩、非抽搐(“紧张性”)肌肉收缩的神经元参数。这些肌肉在哺乳动物中几乎完全不存在,但在低等脊椎动物和无脊椎动物中很常见。慢肌通常被认为主要在紧张性运动模式中发挥作用。然而,先前的研究以及此处呈现的数据表明,慢肌也受到节律性神经元输入的驱动。在快速收缩的“抽搐”肌肉中,运动单位力被认为主要由运动神经元的放电频率决定。而决定慢肌输出的因素则了解得较少。我们提出了一个简单的模型,该模型表明,当运动神经元爆发持续时间与肌肉总和时间相比很短暂的时候,放电次数而非放电频率决定慢肌收缩幅度。我们进行了分析,以区分龙虾口胃系统中两块慢肌对放电次数和放电频率的依赖性。我们的分析表明,在功能上,一块肌肉依赖于放电次数,而另一块肌肉主要依赖于放电频率。因此,这两个参数都可以决定慢肌的输出。为了预测在慢肌常见的标本中神经元活动引发的运动,可能有必要确定每块肌肉对放电次数与放电频率的依赖性。放电次数依赖性将运动神经元爆发持续时间和放电频率联系在一起,因为单独改变这两个参数中的任何一个都会改变放电次数(进而改变肌肉收缩幅度)。因此,支配依赖于放电次数的肌肉的神经网络可能具有特定的特性,以补偿放电次数编码固有的复杂性。