Suppr超能文献

龙虾(Panulirus interruptus)口胃系统中肌肉对不断变化的神经元输入的反应:慢肌特性可将节律性输入转化为紧张性输出。

Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: slow muscle properties can transform rhythmic input into tonic output.

作者信息

Morris L G, Hooper S L

机构信息

Neurobiology Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA.

出版信息

J Neurosci. 1998 May 1;18(9):3433-42. doi: 10.1523/JNEUROSCI.18-09-03433.1998.

Abstract

Slow, non-twitch muscles are widespread in lower vertebrates and invertebrates and are often assumed to be primarily involved in posture or slow motor patterns. However, in several preparations, including some well known invertebrate "model" preparations, slow muscles are driven by rapid, rhythmic inputs. The response of slow muscles to such inputs is little understood. We are investigating this issue with a slow stomatogastric muscle (cpv1b) driven by a relatively rapid, rhythmic neural pattern. A simple model suggests that as cycle period decreases, slow muscle contractions show increasing intercontraction temporal summation and at steady state consist of phasic contractions overlying a tonic contracture. We identify five components of these contractions: total, average, tonic, and phasic amplitudes, and percent phasic (phasic amplitude divided by total amplitude). cpv1b muscle contractions induced by spontaneous rhythmic neural input in vitro consist of phasic and tonic components. Nerve stimulation at varying cycle periods and constant duty cycle shows that a tonic component is always present, and at short periods the muscle transforms rhythmic input into almost completely tonic output. Varying spike frequency, spike number, and cycle period show that frequency codes total, average, and tonic amplitudes, number codes phasic amplitude, and period codes percent phasic. These data suggest that tonic contraction may be a property of slow muscles driven by rapid, rhythmic input, and in these cases it is necessary to identify the various contraction components and their neural coding. Furthermore, the parameters that code these components are interdependent, and control of slow muscle contraction is thus likely complex.

摘要

慢速、非抽搐性肌肉在低等脊椎动物和无脊椎动物中广泛存在,通常被认为主要参与姿势维持或缓慢的运动模式。然而,在包括一些著名的无脊椎动物“模型”标本在内的几种标本中,慢速肌肉是由快速、有节律的输入驱动的。慢速肌肉对这种输入的反应了解甚少。我们正在用由相对快速、有节律的神经模式驱动的慢速口胃肌(cpv1b)来研究这个问题。一个简单的模型表明,随着周期缩短,慢速肌肉收缩的收缩间期时间总和增加,在稳态下由叠加在强直性挛缩上的相位性收缩组成。我们确定了这些收缩的五个组成部分:总和、平均、强直和相位幅度,以及相位百分比(相位幅度除以总幅度)。体外自发节律性神经输入诱导的cpv1b肌肉收缩由相位和强直成分组成。在不同周期和恒定占空比下的神经刺激表明,强直成分始终存在,在短周期时,肌肉将节律性输入转化为几乎完全强直的输出。改变峰值频率、峰值数量和周期表明,频率编码总和、平均和强直幅度,数量编码相位幅度,周期编码相位百分比。这些数据表明,强直收缩可能是由快速、有节律的输入驱动的慢速肌肉的一个特性,在这些情况下,有必要识别各种收缩成分及其神经编码。此外,编码这些成分的参数是相互依赖的,因此慢速肌肉收缩的控制可能很复杂。

相似文献

引用本文的文献

2
Feeding state-dependent modulation of feeding-related motor patterns.摄食状态依赖性调制摄食相关运动模式。
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验