Stemmler T L, Sossong T M, Goldstein J I, Ash D E, Elgren T E, Kurtz D M, Penner-Hahn J E
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
Biochemistry. 1997 Aug 12;36(32):9847-58. doi: 10.1021/bi9702795.
The solution structures of the binuclear Mn centers in arginase, Mn catalase, and the Mn-substituted forms of the Fe enzymes ribonucleotide reductase and hemerythrin have been determined using X-ray absorption spectroscopy (XAS). X-ray absorption near edge structure (XANES) spectra for these proteins were compared to those obtained for Mn(II) models. The Mn model spectra show an inverse correlation between the XANES peak maximum and the root-mean-square (RMS) deviation in metal-ligand bond lengths. For these complexes, the XANES maxima appear to be more effective than the 1s --> 3d areas as an indicator of metal-site symmetry. Arginase and Mn-substituted ribonucleotide reductase have symmetric nearest neighbor environments with low RMS deviation in bond length, while Mn catalase and Mn-substituted hemerythrin appear to have a larger RMS bond length deviation. The 1s --> 3d areas for arginase and Mn-substituted ribonucleotide reductase are consistent with six coordinate Mn, while the 1s --> 3d areas for Mn catalase and Mn-substituted hemerythrin are larger, suggesting that one or both of the Mn ions are five-coordinate in these proteins. Extended x-ray absorption fine structure (EXAFS) spectra were used to determine the Mn2 core structure for the four proteins. In order to quantitate the number of histidine residues bound to the Mn2 centers, EXAFS data for the crystallographically characterized model hexakis-imidazole Mn(II) dichloride tetrahydrate were used to calibrate the Mn-imidazole multiple scattering interactions. These calibrated parameters allowed the outer shell EXAFS to be fit to give a lower limit on the number of bound histidine residues. The EXAFS spectra for Mn-substituted ribonucleotide reductase and arginase are nearly identical, with symmetric Mn-nearest neighbor environments and outer shell scattering consistent with a lower limit of one histidine per Mn2 core. In contrast, the EXAFS data for Mn catalase and Mn-substituted hemerythrin show two distinct Mn-nearest neighbor shells, modeled as Mn-O at ca. 2.1 A and Mn-N at ca. 2.3 A, and outer shell carbon scattering consistent with a lower limit of ca. 2-3 His residues per Mn2 core. Only Mn catalase shows clear evidence for Mn...Mn scattering. The observed Mn...Mn distance is 3.53 A, which is significantly longer than the approximately 3.3 A distances that are typically observed for Mn(II)2 cores with two single atom bridges, but which is typical of the distances seen in Mn(II)2 cores having one single atom bridge (e.g., aqua or hydroxo) together with one or two carboxylate bridges. The absence of EXAFS-detectable Mn...Mn interactions for the other three proteins suggests either that there are no single atom bridges in these cases or that the Mn...Mn interactions are more disordered.
利用X射线吸收光谱法(XAS)测定了精氨酸酶、锰过氧化氢酶以及铁酶核糖核苷酸还原酶和蚯蚓血红蛋白的锰取代形式中双核锰中心的溶液结构。将这些蛋白质的X射线吸收近边结构(XANES)光谱与锰(II)模型的光谱进行了比较。锰模型光谱显示XANES峰最大值与金属-配体键长的均方根(RMS)偏差之间存在反相关关系。对于这些配合物,XANES最大值似乎比1s→3d面积更有效地作为金属位点对称性的指标。精氨酸酶和锰取代的核糖核苷酸还原酶具有对称的最近邻环境,键长的RMS偏差较低,而锰过氧化氢酶和锰取代的蚯蚓血红蛋白似乎具有较大的RMS键长偏差。精氨酸酶和锰取代的核糖核苷酸还原酶的1s→3d面积与六配位锰一致,而锰过氧化氢酶和锰取代的蚯蚓血红蛋白的1s→3d面积较大,表明这些蛋白质中的一个或两个锰离子是五配位的。扩展X射线吸收精细结构(EXAFS)光谱用于确定这四种蛋白质的Mn₂核心结构。为了定量与Mn₂中心结合的组氨酸残基的数量,使用晶体学表征的模型六咪唑锰(II)二氯化物四水合物的EXAFS数据来校准锰-咪唑多重散射相互作用。这些校准参数使外壳EXAFS能够拟合,从而给出结合组氨酸残基数量的下限。锰取代的核糖核苷酸还原酶和精氨酸酶的EXAFS光谱几乎相同,具有对称的锰最近邻环境,外壳散射与每个Mn₂核心一个组氨酸残基的下限一致。相比之下,锰过氧化氢酶和锰取代的蚯蚓血红蛋白的EXAFS数据显示出两个不同的锰最近邻壳层,建模为约2.1 Å处的Mn-O和约2.3 Å处的Mn-N,外壳碳散射与每个Mn₂核心约2-3个组氨酸残基的下限一致。只有锰过氧化氢酶显示出明显的Mn…Mn散射证据。观察到的Mn…Mn距离为3.53 Å,这明显长于具有两个单原子桥的Mn(II)₂核心通常观察到的约3.3 Å距离,但这是具有一个单原子桥(如水或羟基)以及一个或两个羧酸盐桥的Mn(II)₂核心中常见的距离。其他三种蛋白质没有EXAFS可检测到的Mn…Mn相互作用,这表明在这些情况下要么没有单原子桥,要么Mn…Mn相互作用更加无序。