Rink T, Riesle J, Oesterhelt D, Gerwert K, Steinhoff H J
Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany.
Biophys J. 1997 Aug;73(2):983-93. doi: 10.1016/S0006-3495(97)78131-1.
Electron paramagnetic resonance (EPR) spectroscopy of site-directed spin-labeled bacteriorhodopsin mutants is used to study structural changes during the photocycle. After exchange of the native amino acids D36 and D38 in the A-B loop, E161 in the E-F loop, and T46 in the putative proton channel by cysteines, these positions were modified by a methanethiosulfonate spin label. Time-resolved EPR spectroscopy reveals spectral changes during the photocycle for the mutants with spin labels attached to C36, C161, and C46. A comparison of the transient spectral amplitudes with simulated EPR difference spectra shows that the detected signals are due to changes in the spin label mobility and not to possible polarity changes in the vicinity of the attached spin label. The kinetic analysis of the EPR and the visible data with a global fitting procedure exhibits a structural rearrangement near position 161 in the E-F loop in the M state. The environmental changes at positions 36 and 46, however, occur during the M-to-N transition. All structural changes reverse with the recovery of the BR ground state. No structural changes are detected with a spin label attached to C38.
利用定点自旋标记细菌视紫红质突变体的电子顺磁共振(EPR)光谱来研究光循环过程中的结构变化。在将A - B环中的天然氨基酸D36和D38、E - F环中的E161以及假定质子通道中的T46用半胱氨酸替换后,这些位置用甲硫基磺酸盐自旋标记进行修饰。时间分辨EPR光谱揭示了自旋标记连接到C36、C161和C46的突变体在光循环过程中的光谱变化。将瞬态光谱幅度与模拟的EPR差谱进行比较表明,检测到的信号是由于自旋标记流动性的变化,而不是由于连接自旋标记附近可能的极性变化。采用全局拟合程序对EPR和可见数据进行动力学分析,结果显示在M态下E - F环中161位附近发生了结构重排。然而,36位和46位的环境变化发生在M到N的转变过程中。所有结构变化都会随着细菌视紫红质基态的恢复而逆转。当自旋标记连接到C38时,未检测到结构变化。