Kalidindi S R, Ahmad P
Department of Materials Engineering, Drexel University, Philadelphia, PA 19104, USA.
J Biomech Eng. 1997 Aug;119(3):241-7. doi: 10.1115/1.2796087.
The novel concept of swelling-type intramedullary hip implants that attain self-fixation by an expansion-fit mechanism resulting from controlled swelling of the implant (by absorption of body fluids) was examined in detail using a finite element model of the implant-femur system. Some of the potential advantages of this technique over traditional techniques include enhanced fixation, lower relative micromotions, improved bony ingrowth, and elimination of acrylic cement. The finite element model created in this study incorporated: (i) the major aspects of the three-dimensional geometry of the implant and femur, (ii) the anisotropic elastic properties of bone and implant materials and the changes in orientation of the principal axes of anisotropy along the length of the implant-femur system, (iii) a layer of cancellous bone between the implant and cortical bone in the proximal femoral region, and (iv) frictional sliding between the bone and implant. The model was used to study quantitatively the parametric influence of various material design variables on the micromotions and stress fields in the bone-swelling-type implant system. The results of the finite element analyses were used to establish material behavior goals and provide targets for a material development study.
通过植入物(通过吸收体液)的可控肿胀产生的膨胀配合机制实现自固定的新型肿胀型髓内髋关节植入物概念,使用植入物-股骨系统的有限元模型进行了详细研究。该技术相对于传统技术的一些潜在优势包括增强固定、降低相对微动、改善骨长入以及消除丙烯酸骨水泥。本研究创建的有限元模型纳入了:(i) 植入物和股骨三维几何形状的主要方面,(ii) 骨和植入物材料的各向异性弹性特性以及各向异性主轴沿植入物-股骨系统长度方向的取向变化,(iii) 股骨近端区域植入物和皮质骨之间的一层松质骨,以及(iv) 骨与植入物之间的摩擦滑动。该模型用于定量研究各种材料设计变量对骨-肿胀型植入物系统中微动和应力场的参数影响。有限元分析结果用于确定材料行为目标,并为材料开发研究提供目标。