Suppr超能文献

Composite hip prosthesis design. I. Analysis.

作者信息

Yildiz H, Ha S K, Chang F K

机构信息

Department of Aeronautics and Astronautics, Stanford University, CA 94305, USA.

出版信息

J Biomed Mater Res. 1998 Jan;39(1):92-101. doi: 10.1002/(sici)1097-4636(199801)39:1<92::aid-jbm12>3.0.co;2-q.

Abstract

An investigation was performed to study the mechanical performance of fiber-reinforced composite hip prostheses in a femur. The main objective of the study was to evaluate the effect of fiber orientation of a composite femoral implant on the response of the surrounding femoral bone. A three-dimensional finite element analysis was developed for analyzing a composite implant in the femur. A three-dimensional composite element was proposed to take into account ply drop-off due to a change of cross-section of the composite implant. The element could accommodate multidirectional layers and tapered composites. The material properties of the composite were treated as anisotropic and inhomogeneous while the properties of femoral bone were treated as anisotropic and homogenous. All the materials were assumed to behave linear-elastically. The thermoplastic graphite/PEEK material system was selected for the study. In this presentation, as the first part of the study, the development of the finite element analysis will be described. Numerical calculations were generated and compared with existing data and numerical results available from studies related to metal hip prostheses in the literature. Experiments on the composite hip implants were also conducted for further verification of the analysis and the computer simulations. In Part II, using the finite element code, an extensive study was performed to evaluate the stress/strain distributions, micromotions, and strain-energy density of the surrounding femoral bone, which have been related to initial fixation and long-term stability of the prosthesis in a femoral bone. Numerous fiber orientations were studied, and results of the calculations were compared with those generated by the prosthesis made of cobalt alloy and titanium alloy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验