van der Geest R J, Buller V G, Jansen E, Lamb H J, Baur L H, van der Wall E E, de Roos A, Reiber J H
Laboratory for Clinical and Experimental Image Processing, Leiden University Medical Centre, The Netherlands.
J Comput Assist Tomogr. 1997 Sep-Oct;21(5):756-65. doi: 10.1097/00004728-199709000-00019.
The goal of this study was to evaluate a newly developed semiautomated contour detection algorithm for the quantitative analysis of cardiovascular MRI.
Left ventricular function parameters derived from automatically detected endocardial and epicardial contours were compared with results derived from manually traced contours in short-axis multislice GRE MRI studies of 10 normal volunteers and 10 infarct patients.
Compared with manual image analysis, the semiautomated method resulted in the following systematic and random differences (auto-manual; mean +/- SD): end-diastolic volume: -5.5 +/- 9.7 ml; end-systolic volume: -3.6 +/- 6.5 ml; ejection fraction: 1.7 +/- 4.1%; left ventricular mass: 7.3 +/- 20.6 g. Total analysis time for a complete study was reduced from 3-4 h for the manual analysis to < 20 min using semiautomated contour detection.
Global left ventricular function parameters can be obtained with a high degree of accuracy and precision using the present semiautomated contour detection algorithm.
本研究的目的是评估一种新开发的半自动轮廓检测算法,用于心血管磁共振成像的定量分析。
在10名正常志愿者和10名梗死患者的短轴多层GRE磁共振成像研究中,将自动检测的心内膜和心外膜轮廓得出的左心室功能参数与手动描绘轮廓得出的结果进行比较。
与手动图像分析相比,半自动方法产生了以下系统和随机差异(自动-手动;平均值±标准差):舒张末期容积:-5.5±9.7毫升;收缩末期容积:-3.6±6.5毫升;射血分数:1.7±4.1%;左心室质量:7.3±20.6克。使用半自动轮廓检测,完整研究总的分析时间从手动分析的3-4小时减少到了不到20分钟。
使用目前的半自动轮廓检测算法可以高精度和高精确度地获得整体左心室功能参数。