Yi T, Qi-sen Y, Zhi-gang J, Zu-wang W
Department of Conservational Biology, Institute of Zoology, Academia Sinica, 19 Zhongguancun Lu, Haidian, Beijing, 100080, China.
J Theor Biol. 1997 Sep 7;188(1):21-7. doi: 10.1006/jtbi.1997.0452.
A simple discrete time two-phenotype matrix game model is investigated. In this model, according to the suggestion of Vincent & Fisher (1988, Evolutionary Ecology 2, 321-337), the fitness of an individual is defined to be an exponential function of its expected pay-off value. The results show that : (i) in our model, the static conditions of ESS are only dependent on the properties of pay-off matrix, but not on the specific form of fitness function. This result implies that the ESS conditions on our model are completely identical with the conditions in the two-phenotype model with linear fitness function. (ii) In our model, the relationship between the static conditions of ESS and the dynamic properties of the pure strategy model is that if the interior fixed point of the pure strategy model is not an ESS-equilibrium, then it must be unstable; conversely, if the interior fixed point of the pure strategy model is an ESS-equilibrium, then it can be stable or unstable, and an unstable ESS-equilibrium must correspond to the cyclic or chaotic behaviour of the population state.
研究了一个简单的离散时间双表型矩阵博弈模型。在该模型中,根据文森特和费舍尔(1988年,《进化生态学》2,321 - 337)的建议,个体的适应度被定义为其预期收益值的指数函数。结果表明:(i)在我们的模型中,ESS的静态条件仅取决于收益矩阵的性质,而不取决于适应度函数的具体形式。这一结果意味着我们模型中的ESS条件与具有线性适应度函数的双表型模型中的条件完全相同。(ii)在我们的模型中,ESS的静态条件与纯策略模型的动态性质之间的关系是,如果纯策略模型的内部不动点不是ESS均衡点,那么它一定是不稳定的;相反,如果纯策略模型的内部不动点是ESS均衡点,那么它可能是稳定的也可能是不稳定的,并且一个不稳定的ESS均衡点一定对应于种群状态的循环或混沌行为。