Reinhold V N, Reinhold B B, Costello C E
Boston University Medical Campus, Massachusetts 02118, USA.
Anal Chem. 1995 Jun 1;67(11):1772-84. doi: 10.1021/ac00107a005.
This section summarizes several strategies for a more complete understanding of carbohydrate structure with a focus on glycolipids and glycoprotein glycans. The techniques include periodate oxidation to impart greater molecular specificity to isomeric glycans, methylation to improve sensitivity and the information content within CID spectra, electrospray for "soft" and efficient ionization, and CID to obtain structural detail. The lipophilicity of the products following derivatization contributes to product cleanup by solvent extraction and enhances sensitivity during ES. When combined with CID information, this yields sequence, linkage, and branching information. Oxidation and reduction preceding methylation augments CID analysis with an altered structure that can be profiled at the same sensitivity. Within the context of established motifs, these contrasting profiles corroborate glycan structure and specifically identify isobaric elements transparent in the initial profile. An earlier report indicating ring-opening fragments were essentially absent in low-energy collisions of methylated and natriated oligosaccharides contrasts our observations. However, as this report used a methylated oligomer containing an internal N-acetylhexose as an illustration, the conclusion is plausible (cf., Figure 9). The poor ionization efficiency of FAB and the high matrix background limit the dynamic range in the CID spectrum and, thereby, the ability to unambiguously identify weaker peaks. It would be expected that high-energy CID affords a broader range of fragment types, including ring-opening fragments. In terms of a structural methodology, this is ambivalent since the increase in fragmentation pathways also applies to small molecule eliminations which are usually less informative. In ES-CID-MS, the carbohydrate chemist has a powerful new tool in hand for structural elucidations that can be conducted at the low-picomole level. Parallel developments can be expected to continue for other ionization methods, in particular matrix-assisted desorption/ionization on linear and reflectron time of flight mass spectrometers, and improvement in the performance and sensitivity of high-resolution mass analyzers through the use of focal plane detectors and more sophisticated hardware and software for Fourier transform ion cyclotron resonance mass measurements. These have, as yet, only begun to be applied to carbohydrate structural analysis but should add still more versatility to experimental design in the future.
本节总结了几种更全面理解碳水化合物结构的策略,重点是糖脂和糖蛋白聚糖。这些技术包括高碘酸盐氧化,以赋予异构体聚糖更高的分子特异性;甲基化,以提高灵敏度和碰撞诱导解离(CID)谱中的信息含量;电喷雾用于“软”且高效的电离,以及CID以获得结构细节。衍生化后产物的亲脂性有助于通过溶剂萃取进行产物净化,并提高电喷雾过程中的灵敏度。当与CID信息结合时,这会产生序列、连接和分支信息。甲基化之前的氧化和还原通过改变结构增强了CID分析,这种改变后的结构可以在相同灵敏度下进行分析。在既定基序的背景下,这些对比图谱证实了聚糖结构,并特别识别出在初始图谱中不明显的等压元素。一份较早的报告表明,甲基化和钠化寡糖在低能碰撞中基本不存在开环碎片,这与我们的观察结果不同。然而,由于该报告使用了含有内部N - 乙酰己糖的甲基化寡聚物作为示例,该结论是合理的(参见图9)。快原子轰击(FAB)的电离效率低和高基质背景限制了CID谱中的动态范围,从而限制了明确识别较弱峰的能力。预计高能CID会提供更广泛的碎片类型,包括开环碎片。就结构方法而言,这是矛盾的,因为碎片途径的增加也适用于通常信息量较少的小分子消除反应。在电喷雾 - CID - 质谱(ES - CID - MS)中,碳水化合物化学家手中有了一种强大的新工具,可用于在低皮摩尔水平进行结构解析。预计其他电离方法也会继续并行发展,特别是线性和反射式飞行时间质谱仪上的基质辅助解吸/电离,以及通过使用焦平面探测器和更复杂的硬件及软件进行傅里叶变换离子回旋共振质谱测量来提高高分辨率质量分析仪的性能和灵敏度。这些方法目前才刚刚开始应用于碳水化合物结构分析,但未来应该会为实验设计增添更多的通用性。