Gauderman W J, Faucett C L
Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Am J Hum Genet. 1997 Nov;61(5):1189-99. doi: 10.1086/301597.
We compare approaches for analysis of gene-environment (G x E) interaction, using segregation and joint segregation and linkage analyses of a quantitative trait. Analyses of triglyceride levels in a single large pedigree demonstrate the two methods and show evidence for a significant interaction (P=.015 when segregation analysis is used; P=.006 when joint analysis is used) between a codominant major gene and body-mass index. Genotype-specific correlation coefficients, between triglyceride levels and body-mass index, estimated from the joint model are rAA=.72, rAa=.49, and raa=. 20. Several simulation studies indicate that joint segregation and linkage analysis leads to less-biased and more-efficient estimates of a G x E-interaction effect, compared with segregation analysis alone. Depending on the heterozygosity of the marker locus and its proximity to the trait locus, we found joint analysis to be as much as 70% more efficient than segregation analysis, for estimation of a G x E-interaction effect. Over a variety of parameter combinations, joint analysis also led to moderate (5%-10%) increases in power to detect the interaction. On the basis of these results, we suggest the use of combined segregation and linkage analysis for improved estimation of G x E-interaction effects when the underlying trait gene is unmeasured.
我们使用数量性状的分离分析、联合分离分析和连锁分析,比较基因-环境(G×E)相互作用的分析方法。对一个大型单一家系中甘油三酯水平的分析展示了这两种方法,并显示出一个共显性主基因与体重指数之间存在显著相互作用的证据(使用分离分析时P = 0.015;使用联合分析时P = 0.006)。从联合模型估计的甘油三酯水平与体重指数之间的基因型特异性相关系数为rAA = 0.72,rAa = 0.49,raa = 0.20。多项模拟研究表明,与单独的分离分析相比,联合分离分析和连锁分析能得到对G×E相互作用效应偏差更小、效率更高的估计。根据标记位点的杂合性及其与性状位点的接近程度,我们发现对于G×E相互作用效应的估计,联合分析比分离分析效率高70%。在各种参数组合下,联合分析还使检测相互作用的效能适度提高(5%-10%)。基于这些结果,我们建议在潜在性状基因未测定时,使用联合分离分析和连锁分析来更好地估计G×E相互作用效应。