Suppr超能文献

在联合分离分析和连锁分析中检测基因-环境相互作用。

Detection of gene-environment interactions in joint segregation and linkage analysis.

作者信息

Gauderman W J, Faucett C L

机构信息

Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Am J Hum Genet. 1997 Nov;61(5):1189-99. doi: 10.1086/301597.

Abstract

We compare approaches for analysis of gene-environment (G x E) interaction, using segregation and joint segregation and linkage analyses of a quantitative trait. Analyses of triglyceride levels in a single large pedigree demonstrate the two methods and show evidence for a significant interaction (P=.015 when segregation analysis is used; P=.006 when joint analysis is used) between a codominant major gene and body-mass index. Genotype-specific correlation coefficients, between triglyceride levels and body-mass index, estimated from the joint model are rAA=.72, rAa=.49, and raa=. 20. Several simulation studies indicate that joint segregation and linkage analysis leads to less-biased and more-efficient estimates of a G x E-interaction effect, compared with segregation analysis alone. Depending on the heterozygosity of the marker locus and its proximity to the trait locus, we found joint analysis to be as much as 70% more efficient than segregation analysis, for estimation of a G x E-interaction effect. Over a variety of parameter combinations, joint analysis also led to moderate (5%-10%) increases in power to detect the interaction. On the basis of these results, we suggest the use of combined segregation and linkage analysis for improved estimation of G x E-interaction effects when the underlying trait gene is unmeasured.

摘要

我们使用数量性状的分离分析、联合分离分析和连锁分析,比较基因-环境(G×E)相互作用的分析方法。对一个大型单一家系中甘油三酯水平的分析展示了这两种方法,并显示出一个共显性主基因与体重指数之间存在显著相互作用的证据(使用分离分析时P = 0.015;使用联合分析时P = 0.006)。从联合模型估计的甘油三酯水平与体重指数之间的基因型特异性相关系数为rAA = 0.72,rAa = 0.49,raa = 0.20。多项模拟研究表明,与单独的分离分析相比,联合分离分析和连锁分析能得到对G×E相互作用效应偏差更小、效率更高的估计。根据标记位点的杂合性及其与性状位点的接近程度,我们发现对于G×E相互作用效应的估计,联合分析比分离分析效率高70%。在各种参数组合下,联合分析还使检测相互作用的效能适度提高(5%-10%)。基于这些结果,我们建议在潜在性状基因未测定时,使用联合分离分析和连锁分析来更好地估计G×E相互作用效应。

相似文献

1
Detection of gene-environment interactions in joint segregation and linkage analysis.
Am J Hum Genet. 1997 Nov;61(5):1189-99. doi: 10.1086/301597.
2
Effects of genotype-by-sex interaction on quantitative trait linkage analysis.
Genet Epidemiol. 1997;14(6):1053-8. doi: 10.1002/(SICI)1098-2272(1997)14:6<1053::AID-GEPI82>3.0.CO;2-G.
3
Should we consider gene x environment interaction in the hunt for quantitative trait loci?
Genet Epidemiol. 2001;21 Suppl 1:S831-6. doi: 10.1002/gepi.2001.21.s1.s831.
4
Joint segregation and linkage analysis of a quantitative trait compared to separate analyses.
Genet Epidemiol. 1997;14(6):993-8. doi: 10.1002/(SICI)1098-2272(1997)14:6<993::AID-GEPI72>3.0.CO;2-F.
7
Maximum likelihood estimation of linkage between a marker gene and a quantitative locus.
Heredity (Edinb). 1989 Dec;63 ( Pt 3):401-8. doi: 10.1038/hdy.1989.114.
8
Segregation Analysis Using the Unified Model.
Methods Mol Biol. 2017;1666:233-256. doi: 10.1007/978-1-4939-7274-6_12.
9
Heterozygosity for genes influencing a quantitative trait.
J Anim Sci. 2002 Jun;80(6):1478-88. doi: 10.2527/2002.8061478x.
10
The detection of major loci by segregation and linkage analysis: a simulation study.
Genet Epidemiol. 1984;1(3):285-96. doi: 10.1002/gepi.1370010307.

引用本文的文献

1
Bayesian Semiparametric Estimation of Cancer-specific Age-at-onset Penetrance with Application to Li-Fraumeni Syndrome.
J Am Stat Assoc. 2019;114(526):541-552. doi: 10.1080/01621459.2018.1482749. Epub 2018 Aug 15.
2
Challenges and opportunities in genome-wide environmental interaction (GWEI) studies.
Hum Genet. 2012 Oct;131(10):1591-613. doi: 10.1007/s00439-012-1192-0. Epub 2012 Jul 4.
3
Joint effects of germ-line TP53 mutation, MDM2 SNP309, and gender on cancer risk in family studies of Li-Fraumeni syndrome.
Hum Genet. 2011 Jun;129(6):663-73. doi: 10.1007/s00439-011-0957-1. Epub 2011 Feb 9.
4
Gene--environment-wide association studies: emerging approaches.
Nat Rev Genet. 2010 Apr;11(4):259-72. doi: 10.1038/nrg2764.
5
Effects of measured susceptibility genes on cancer risk in family studies.
Hum Genet. 2010 Mar;127(3):349-57. doi: 10.1007/s00439-009-0774-y. Epub 2009 Dec 29.
6
Machine learning for detecting gene-gene interactions: a review.
Appl Bioinformatics. 2006;5(2):77-88. doi: 10.2165/00822942-200605020-00002.

本文引用的文献

1
Analysis of gene-smoking interaction in lung cancer.
Genet Epidemiol. 1997;14(2):199-214. doi: 10.1002/(SICI)1098-2272(1997)14:2<199::AID-GEPI8>3.0.CO;2-2.
2
How can maximum likelihood methods reveal candidate gene effects on a quantitative trait?
Genet Epidemiol. 1995;12(6):789-94. doi: 10.1002/gepi.1370120643.
3
Weighted pairwise correlation and transmission disequilibrium in a common oligogenic disease.
Genet Epidemiol. 1995;12(6):747-51. doi: 10.1002/gepi.1370120636.
4
Pedigree analysis package vs. MIXD: fitting the mixed model on a large pedigree.
Genet Epidemiol. 1996;13(1):91-106. doi: 10.1002/(SICI)1098-2272(1996)13:1<91::AID-GEPI8>3.0.CO;2-9.
6
Linkage analysis in a large pedigree ascertained due to essential familial hypercholesterolemia.
Genet Epidemiol. 1993;10(6):665-9. doi: 10.1002/gepi.1370100656.
8
The HGAR1 familial hypercholesterolemia pedigree.
Genet Epidemiol. 1993;10(6):529-31. doi: 10.1002/gepi.1370100633.
9
Lipoprotein subclasses in genetic studies: the Berkeley data set.
Genet Epidemiol. 1993;10(6):523-8. doi: 10.1002/gepi.1370100632.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验