Suppr超能文献

使用模式图高效发现保守模式。

Efficient discovery of conserved patterns using a pattern graph.

作者信息

Jonassen I

机构信息

Department of Informatics, University of Bergen, Norway.

出版信息

Comput Appl Biosci. 1997 Oct;13(5):509-22. doi: 10.1093/bioinformatics/13.5.509.

Abstract

MOTIVATION

We have previously reported an algorithm for discovering patterns conserved in sets of related unaligned protein sequences. The algorithm was implemented in a program called Pratt. Pratt allows the user to define a class of patterns (e.g. the degree of ambiguity allowed and the length and number of gaps), and is then guaranteed to find the conserved patterns in this class scoring highest according to a defined fitness measure. In many cases, this version of Pratt was very efficient, but in other cases it was too time consuming to be applied. Hence, a more efficient algorithm was needed.

RESULTS

In this paper, we describe a new and improved searching strategy that has two main advantages over the old strategy. First, it allows for easier integration with programs for multiple sequence alignment and data base search. Secondly, it makes it possible to use branch-and-bound search, and heuristics, to speed up the search. The new search strategy has been implemented in a new version of the Pratt program.

摘要

动机

我们之前报道了一种用于发现相关未比对蛋白质序列集中保守模式的算法。该算法在一个名为Pratt的程序中实现。Pratt允许用户定义一类模式(例如允许的模糊程度以及空位的长度和数量),然后保证能找到根据定义的适应度度量在此类中得分最高的保守模式。在许多情况下,这个版本的Pratt非常高效,但在其他情况下应用起来过于耗时。因此,需要一种更高效的算法。

结果

在本文中,我们描述了一种新的且经过改进的搜索策略,它相对于旧策略有两个主要优点。首先,它便于与多序列比对程序和数据库搜索程序进行集成。其次,它使得使用分支限界搜索和启发式方法来加速搜索成为可能。新的搜索策略已在Pratt程序的新版本中实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验